python线性规划如何求解
这篇“python线性规划如何求解”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python线性规划如何求解”文章吧。
专注于为中小企业提供成都做网站、成都网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业红桥免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
说明
1、图解法,用几何绘图的方法,求出最优解。
中学就讲过这种方法,在经济学研究中非常常用。
2、矩阵法,引入松弛变量。
将线性规划问题转化为增广矩阵形式,然后逐步解决,是简单性法之前的典型方法;
3、单纯法,利用多面体在可行领域逐步构建新的顶点,不断逼近最优解。
是线性规划研究的里程碑,至今仍是最重要的方法之一;
4、内点法。
通过选择可行域内点沿下降方向不断迭代,达到最佳解决方案,是目前理论上最好的线性规划问题解决方案;
5、启发法。
依靠经验准则不断迭代改进,搜索最优解,如贪心法、模拟退火、遗传算法、神经网络等。
单纯法实例
import numpy as np #导入相应的库 import sys def solve(d,bn): while max(list(d[0][:-1])) > 0: l = list(d[0][:-2]) jnum = l.index(max(l)) #转入下标 m=[] for i in range(bn): if d[i][jnum] == 0: m.append(0.) else: m.append(d[i][-1]/d[i][jnum]) inum = m.index(min([x for x in m[1:] if x!=0])) #转出下标 s[inum-1] = jnum #更新基变量 d[inum] /= d[inum][jnum] for i in range(bn): if i != inum: d[i] -= d[i][jnum] * d[inum] def printSol(d,cn): for i in range(cn - 1): if i in s: print("x"+str(i)+"=%.2f" %d[s.index(i)+1][-1]) else: print("x"+str(i)+"=0.00") print("objective is %.2f"%(-d[0][-1]))
以上就是关于“python线性规划如何求解”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。
当前标题:python线性规划如何求解
URL链接:http://pcwzsj.com/article/psojhh.html