从搭建大数据环境到执行WordCount所遇到的坑是怎样的
从搭建大数据环境到执行WordCount所遇到的坑是怎样的,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站制作、网站设计、翁牛特网络推广、微信小程序开发、翁牛特网络营销、翁牛特企业策划、翁牛特品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联为所有大学生创业者提供翁牛特建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com
从搭建大数据环境说起,到执行WordCount所遇到的坑
背景说明
最近(2020年12月20日)在了解大数据相关架构及技术体系。
虽然说只是了解,不需要亲自动手去搭建一个环境并执行相应的job
。
但是,技术嘛。就是要靠下笨功夫,一点点的积累。该动手的还是不能少。
所以,就从搭环境(基于docker
)开始,一直到成功执行了一个基于yarn
调度的wordcount
的job
。
期间,遇到了不少坑点,一个一个填好,大概花了10
个小时左右的时间。
希望能将这种血泪教训,分享给需要的人。花更少的时间,去完成整个流程。
注意:个人本地环境为macOS Big Sur
。
基于docker compose
的大数据环境搭建
参考 docker-hadoop-spark-hive 快速构建你的大数据环境 搭建了一个大数据环境,调整了部分参数,以适用于mac os
。
主要是如下五个文件:
. ├── copy-jar.sh # spark yarn支持 ├── docker-compose.yml # docker compose文件 ├── hadoop-hive.env # 环境变量配置 ├── run.sh # 启动脚本 └── stop.sh # 停止脚本
注意:mac os
的docker
有一个坑点就是无法直接在宿主机访问容器,我使用Docker for Mac 的网络问题及解决办法(新增方法四)中的方法四解决的。
注意:需要在宿主机配置好相应docker
容器对应的ip
,这才能保证job
成功执行,且各个服务在宿主机访问的时候,跳转不会出现问题。这坑很深,慎踩
。
# switch_local 172.21.0.3 namenode 172.21.0.8 resourcemanager 172.21.0.9 nodemanager 172.21.0.10 historyserver
docker-compose.yml
version: '2' services: namenode: image: bde2020/hadoop-namenode:1.1.0-hadoop2.8-java8 container_name: namenode volumes: - ~/data/namenode:/hadoop/dfs/name environment: - CLUSTER_NAME=test env_file: - ./hadoop-hive.env ports: - 50070:50070 - 8020:8020 resourcemanager: image: bde2020/hadoop-resourcemanager:1.1.0-hadoop2.8-java8 container_name: resourcemanager environment: - CLUSTER_NAME=test env_file: - ./hadoop-hive.env ports: - 8088:8088 historyserver: image: bde2020/hadoop-historyserver:1.1.0-hadoop2.8-java8 container_name: historyserver environment: - CLUSTER_NAME=test env_file: - ./hadoop-hive.env ports: - 8188:8188 datanode: image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8 depends_on: - namenode volumes: - ~/data/datanode:/hadoop/dfs/data env_file: - ./hadoop-hive.env ports: - 50075:50075 datanode2: image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8 depends_on: - namenode volumes: - ~/data/datanode2:/hadoop/dfs/data env_file: - ./hadoop-hive.env ports: - 50076:50075 datanode3: image: bde2020/hadoop-datanode:1.1.0-hadoop2.8-java8 depends_on: - namenode volumes: - ~/data/datanode3:/hadoop/dfs/data env_file: - ./hadoop-hive.env ports: - 50077:50075 nodemanager: image: bde2020/hadoop-nodemanager:1.1.0-hadoop2.8-java8 container_name: nodemanager hostname: nodemanager environment: - CLUSTER_NAME=test env_file: - ./hadoop-hive.env ports: - 8042:8042 hive-server: image: bde2020/hive:2.1.0-postgresql-metastore container_name: hive-server env_file: - ./hadoop-hive.env environment: - "HIVE_CORE_CONF_javax_jdo_option_ConnectionURL=jdbc:postgresql://hive-metastore/metastore" ports: - "10000:10000" hive-metastore: image: bde2020/hive:2.1.0-postgresql-metastore container_name: hive-metastore env_file: - ./hadoop-hive.env command: /opt/hive/bin/hive --service metastore ports: - 9083:9083 hive-metastore-postgresql: image: bde2020/hive-metastore-postgresql:2.1.0 ports: - 5432:5432 volumes: - ~/data/postgresql/:/var/lib/postgresql/data spark-master: image: bde2020/spark-master:2.1.0-hadoop2.8-hive-java8 container_name: spark-master hostname: spark-master volumes: - ./copy-jar.sh:/copy-jar.sh ports: - 18080:8080 - 7077:7077 env_file: - ./hadoop-hive.env spark-worker: image: bde2020/spark-worker:2.1.0-hadoop2.8-hive-java8 depends_on: - spark-master environment: - SPARK_MASTER=spark://spark-master:7077 ports: - "18081:8081" env_file: - ./hadoop-hive.env
hadoop-hive.env
HIVE_SITE_CONF_javax_jdo_option_ConnectionURL=jdbc:postgresql://hive-metastore-postgresql/metastore HIVE_SITE_CONF_javax_jdo_option_ConnectionDriverName=org.postgresql.Driver HIVE_SITE_CONF_javax_jdo_option_ConnectionUserName=hive HIVE_SITE_CONF_javax_jdo_option_ConnectionPassword=hive HIVE_SITE_CONF_datanucleus_autoCreateSchema=false HIVE_SITE_CONF_hive_metastore_uris=thrift://hive-metastore:9083 HIVE_SITE_CONF_hive_metastore_warehouse_dir=hdfs://namenode:8020/user/hive/warehouse CORE_CONF_fs_defaultFS=hdfs://namenode:8020 CORE_CONF_fs_default_name=hdfs://namenode:8020 CORE_CONF_hadoop_http_staticuser_user=root CORE_CONF_hadoop_proxyuser_hue_hosts=* CORE_CONF_hadoop_proxyuser_hue_groups=* HDFS_CONF_dfs_webhdfs_enabled=true HDFS_CONF_dfs_permissions_enabled=false YARN_CONF_yarn_log___aggregation___enable=true YARN_CONF_yarn_resourcemanager_recovery_enabled=true YARN_CONF_yarn_resourcemanager_store_class=org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore YARN_CONF_yarn_resourcemanager_fs_state___store_uri=/rmstate YARN_CONF_yarn_nodemanager_remote___app___log___dir=/app-logs YARN_CONF_yarn_log_server_url=http://historyserver:8188/applicationhistory/logs/ YARN_CONF_yarn_timeline___service_enabled=true YARN_CONF_yarn_timeline___service_generic___application___history_enabled=true YARN_CONF_yarn_resourcemanager_system___metrics___publisher_enabled=true YARN_CONF_yarn_resourcemanager_hostname=resourcemanager YARN_CONF_yarn_timeline___service_hostname=historyserver YARN_CONF_yarn_resourcemanager_address=resourcemanager:8032 YARN_CONF_yarn_resourcemanager_scheduler_address=resourcemanager:8030 YARN_CONF_yarn_resourcemanager_resource__tracker_address=resourcemanager:8031 YARN_CONF_yarn_resourcemanager_resource__tracker_address=resourcemanager:8031 YARN_CONF_yarn_nodemanager_aux___services=mapreduce_shuffle
run.sh
#!/bin/bash # 启动容器 docker-compose -f docker-compose.yml up -d namenode hive-metastore-postgresql docker-compose -f docker-compose.yml up -d datanode datanode2 datanode3 hive-metastore docker-compose -f docker-compose.yml up -d resourcemanager docker-compose -f docker-compose.yml up -d nodemanager docker-compose -f docker-compose.yml up -d historyserver sleep 5 docker-compose -f docker-compose.yml up -d hive-server docker-compose -f docker-compose.yml up -d spark-master spark-worker # 获取ip地址并打印到控制台 my_ip=`ifconfig | grep 'inet.*netmask.*broadcast' | awk '{print $2;exit}'` echo "Namenode: http://${my_ip}:50070" echo "Datanode: http://${my_ip}:50075" echo "Spark-master: http://${my_ip}:18080" # 执行脚本,spark yarn支持 docker-compose exec spark-master bash -c "./copy-jar.sh && exit"
copy-jar.sh
#!/bin/bash cd /opt/hadoop-2.8.0/share/hadoop/yarn/lib/ && cp jersey-core-1.9.jar jersey-client-1.9.jar /spark/jars/ && rm -rf /spark/jars/jersey-client-2.22.2.jar
stop.sh
#!/bin/bash docker-compose stop
基于IDEA
提交MapReduce
至yarn
参考列表
IDEA向hadoop集群提交MapReduce作业
java操作hadoop hdfs,实现文件上传下载demo
IDEA远程提交mapreduce任务至linux,遇到ClassNotFoundException: Mapper
注意:在提交至yarn
的时候,要将代码打成jar
包,否则会报错ClassNotFoundExeption
。具体参考《IDEA远程提交mapreduce任务至linux,遇到ClassNotFoundException: Mapper》。
pom.xml
4.0.0 com.switchvov hadoop-test 1.0.0 hadoop-test UTF-8 1.8 1.8 junit junit 4.12 test org.apache.hadoop hadoop-client 2.8.0 org.apache.hadoop hadoop-common 2.8.0 org.apache.hadoop hadoop-hdfs 2.8.0
log4j.properties
log4j.rootLogger=INFO, console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.Target=System.out log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=[%p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%m%n
words.txt
this is a tests this is a tests this is a tests this is a tests this is a tests this is a tests this is a tests this is a tests this is a tests
HdfsDemo.java
package com.switchvov.hadoop.hdfs; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import java.io.InputStream; /** * @author switch * @since 2020/12/18 */ public class HdfsDemo { /** * hadoop fs的配置文件 */ private static final Configuration CONFIGURATION = new Configuration(); static { // 指定hadoop fs的地址 CONFIGURATION.set("fs.default.name", "hdfs://namenode:8020"); } /** * 将本地文件(filePath)上传到HDFS服务器的指定路径(dst) */ public static void uploadFileToHDFS(String filePath, String dst) throws Exception { // 创建一个文件系统 FileSystem fs = FileSystem.get(CONFIGURATION); Path srcPath = new Path(filePath); Path dstPath = new Path(dst); long start = System.currentTimeMillis(); fs.copyFromLocalFile(false, srcPath, dstPath); System.out.println("Time:" + (System.currentTimeMillis() - start)); System.out.println("________准备上传文件" + CONFIGURATION.get("fs.default.name") + "____________"); fs.close(); } /** * 下载文件 */ public static void downLoadFileFromHDFS(String src) throws Exception { FileSystem fs = FileSystem.get(CONFIGURATION); Path srcPath = new Path(src); InputStream in = fs.open(srcPath); try { // 将文件COPY到标准输出(即控制台输出) IOUtils.copyBytes(in, System.out, 4096, false); } finally { IOUtils.closeStream(in); fs.close(); } } public static void main(String[] args) throws Exception { String filename = "words.txt"; // uploadFileToHDFS( // "/Users/switch/projects/OtherProjects/bigdata-enviroment/hadoop-test/data/" + filename, // "/share/" + filename // ); downLoadFileFromHDFS("/share/output12/" + filename + "/part-r-00000"); } }
WordCountRunner.java
package com.switchvov.hadoop.mapreduce.wordcount; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * @author switch * @since 2020/12/17 */ public class WordCountRunner { /** * LongWritable 行号 类型 * Text 输入的value 类型 * Text 输出的key 类型 * IntWritable 输出的value 类型 * * @author switch * @since 2020/12/17 */ public static class WordCountMapper extends Mapper{ /** * @param key 行号 * @param value 第一行的内容 如 this is a tests * @param context 输出 * @throws IOException 异常 * @throws InterruptedException 异常 */ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); // 以空格分割获取字符串数组 String[] words = line.split(" "); for (String word : words) { context.write(new Text(word), new IntWritable(1)); } } } /** * Text 输入的key的类型 * IntWritable 输入的value的类型 * Text 输出的key类型 * IntWritable 输出的value类型 * * @author switch * @since 2020/12/17 */ public static class WordCountReducer extends Reducer { /** * @param key 输入map的key * @param values 输入map的value * @param context 输出 * @throws IOException 异常 * @throws InterruptedException 异常 */ @Override protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int count = 0; for (IntWritable value : values) { count += value.get(); } context.write(key, new IntWritable(count)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); // 跨平台,保证在 Windows 下可以提交 mr job conf.set("mapreduce.app-submission.cross-platform", "true"); // 配置yarn调度 conf.set("mapreduce.framework.name", "yarn"); // 配置resourcemanager的主机名 conf.set("yarn.resourcemanager.hostname", "resourcemanager"); // 配置默认了namenode访问地址 conf.set("fs.defaultFS", "hdfs://namenode:8020"); conf.set("fs.default.name", "hdfs://namenode:8020"); // 配置代码jar包,否则会出现ClassNotFound异常,参考:https://blog.csdn.net/qq_19648191/article/details/56684268 conf.set("mapred.jar", "/Users/switch/projects/OtherProjects/bigdata-enviroment/hadoop-test/out/artifacts/hadoop/hadoop.jar"); // 任务名 Job job = Job.getInstance(conf, "word count"); // 指定Class job.setJarByClass(WordCountRunner.class); // 指定 Mapper Class job.setMapperClass(WordCountMapper.class); // 指定 Combiner Class,与 reduce 计算逻辑一样 job.setCombinerClass(WordCountReducer.class); // 指定Reucer Class job.setReducerClass(WordCountReducer.class); // 指定输出的KEY的格式 job.setOutputKeyClass(Text.class); // 指定输出的VALUE的格式 job.setOutputValueClass(IntWritable.class); //设置Reducer 个数默认1 job.setNumReduceTasks(1); // Mapper
关于从搭建大数据环境到执行WordCount所遇到的坑是怎样的问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
分享名称:从搭建大数据环境到执行WordCount所遇到的坑是怎样的
标题网址:http://pcwzsj.com/article/pgpshg.html