DeviceManager在什么时候创建
这篇文章主要介绍“Device Manager在什么时候创建”,在日常操作中,相信很多人在Device Manager在什么时候创建问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Device Manager在什么时候创建”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
湖口ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
Create Device Manager Instance
Device Manager在何时创建
Device Manager和Volume Manager、QoS Container Manager等一样,都属于kubelet管理的众多Manager之一。Device Manager在kubelet启动时的NewContainerManager中创建。
pkg/kubelet/cm/container_manager_linux.go:197 func NewContainerManager(mountUtil mount.Interface, cadvisorInterface cadvisor.Interface, nodeConfig NodeConfig, failSwapOn bool, devicePluginEnabled bool, recorder record.EventRecorder) (ContainerManager, error) { ... glog.Infof("Creating device plugin manager: %t", devicePluginEnabled) if devicePluginEnabled { cm.deviceManager, err = devicemanager.NewManagerImpl() } else { cm.deviceManager, err = devicemanager.NewManagerStub() } if err != nil { return nil, err } ... }
ManagerImpl结构体
我们有必要先了解Device Manager的结构体:
// ManagerImpl is the structure in charge of managing Device Plugins. type ManagerImpl struct { socketname string socketdir string endpoints map[string]endpoint // Key is ResourceName mutex sync.Mutex server *grpc.Server // activePods is a method for listing active pods on the node // so the amount of pluginResources requested by existing pods // could be counted when updating allocated devices activePods ActivePodsFunc // sourcesReady provides the readiness of kubelet configuration sources such as apiserver update readiness. // We use it to determine when we can purge inactive pods from checkpointed state. sourcesReady config.SourcesReady // callback is used for updating devices' states in one time call. // e.g. a new device is advertised, two old devices are deleted and a running device fails. callback monitorCallback // healthyDevices contains all of the registered healthy resourceNames and their exported device IDs. healthyDevices map[string]sets.String // unhealthyDevices contains all of the unhealthy devices and their exported device IDs. unhealthyDevices map[string]sets.String // allocatedDevices contains allocated deviceIds, keyed by resourceName. allocatedDevices map[string]sets.String // podDevices contains pod to allocated device mapping. podDevices podDevices store utilstore.Store pluginOpts map[string]*pluginapi.DevicePluginOptions }
下面是核心field的说明:
socketname: 就是kubelet对外暴露的socket名,即
kubelet.sock
。socketdir: device plugins' socket的存放的目录,
/var/lib/kubelet/device-plugins/
。endpoints: map对象,key为Resource Name,value为endpoint接口(包括run,stop,allocate,preStartContainer,getDevices,callback,isStoped,StopGracePeriodExpired),每个endpoint接口对应一个已注册的device plugin,负责与device plugin的gRPC通信及缓存device plugin反馈的device states。
server: Register服务暴露的gRPC Server。
activePods: 用来获取该节点上所有active pods,即non-Terminated状态的Pods。在kubelet的initializeRuntimeDependentModules时会注册activePods Func为如下函数:
// GetActivePods returns non-terminal pods func (kl *Kubelet) GetActivePods() []*v1.Pod { allPods := kl.podManager.GetPods() activePods := kl.filterOutTerminatedPods(allPods) return activePods }
callback: 是kubelet收到device plugin的ListAndWatch gRCP stream中有devices state变更时的回调函数,包括有新设备增加、旧设备删除、设备状态变化,所以通过ListAndWatch接口的回调方式,可以实现设备的自动发现和热插拔。
type monitorCallback func(resourceName string, added, updated, deleted []pluginapi.Device)
healthyDevices: map对象,key为Resource Name,value为对应的健康的device IDs。
unhealthyDevices: map对象,key为Resource Name,value为对应的不健康的device IDs。
allocatedDevices: map对象,key为Resource Name,value为已经分配出去的device IDs。
podDevices: 记录每个pod中每个容器的device分配情况。
// ContainerAllocateResponse为容器内某个device对应的分配信息,包括注入的环境变量、挂载信息、Annotations。 type ContainerAllocateResponse struct { Envs map[string]string Mounts []*Mount Devices []*DeviceSpec Annotations map[string]string } // deviceAllocateInfo type deviceAllocateInfo struct { deviceIds sets.String allocResp *pluginapi.ContainerAllocateResponse } type resourceAllocateInfo map[string]deviceAllocateInfo // Keyed by resourceName. type containerDevices map[string]resourceAllocateInfo // Keyed by containerName. type podDevices map[string]containerDevices // Keyed by podUID.
store: 是对checkpointData的文件存储(
/var/lib/kubelet/device-plugins/kubelet_internal_checkpoint
),具体存储了每个Pod分配的Devices信息PodDeviceEntries, 以及已经注册的Resource Name及对应的Devices IDs。type checkpointData struct { PodDeviceEntries []podDevicesCheckpointEntry RegisteredDevices map[string][]string // key为Resource Name,value为DeviceIDs } type podDevicesCheckpointEntry struct { PodUID string ContainerName string ResourceName string DeviceIDs []string AllocResp []byte }
pluginOpts: map对象,key为Resource Name,value为DevicePluginOptions,目前只有一项内容,就是
PreStartRequired bool
,表示是否在容器启动前要调用device plugin的PreStartContiner
接口。在nvidia-k8s-plugin中,PreStartContainer
为空实现。
NewManagerImpl
我们再来看看Device Manager的具体创建实现NewManagerImpl
。
pkg/kubelet/cm/devicemanager/manager.go:97 // NewManagerImpl creates a new manager. func NewManagerImpl() (*ManagerImpl, error) { // 通过/var/lib/kubelet/device-plugins/kubelet.sock与device plugin交互 return newManagerImpl(pluginapi.KubeletSocket) } func newManagerImpl(socketPath string) (*ManagerImpl, error) { glog.V(2).Infof("Creating Device Plugin manager at %s", socketPath) if socketPath == "" || !filepath.IsAbs(socketPath) { return nil, fmt.Errorf(errBadSocket+" %v", socketPath) } dir, file := filepath.Split(socketPath) manager := &ManagerImpl{ endpoints: make(map[string]endpoint), socketname: file, socketdir: dir, healthyDevices: make(map[string]sets.String), unhealthyDevices: make(map[string]sets.String), allocatedDevices: make(map[string]sets.String), pluginOpts: make(map[string]*pluginapi.DevicePluginOptions), podDevices: make(podDevices), } manager.callback = manager.genericDeviceUpdateCallback // The following structs are populated with real implementations in manager.Start() // Before that, initializes them to perform no-op operations. manager.activePods = func() []*v1.Pod { return []*v1.Pod{} } manager.sourcesReady = &sourcesReadyStub{} var err error // 在/var/lib/kubelet/device-plugins/目录下创建file store类型的key-value存储文件kubelet_internal_checkpoint,用来作为kubelet的device plugin的checkpoint。 manager.store, err = utilstore.NewFileStore(dir, utilfs.DefaultFs{}) if err != nil { return nil, fmt.Errorf("failed to initialize device plugin checkpointing store: %+v", err) } return manager, nil }
kubelet Device Manager通过
/var/lib/kubelet/device-plugins/kubelet.sock
与device plugin交互。注册callback为
genericDeviceUpdateCallback
,用来处理对应devices的add,delete,update事件。在
/var/lib/kubelet/device-plugins/
目录下创建file store类型的key-value存储文件kubelet_internal_checkpoint
,用来作为kubelet的device plugin的checkpoint。当监听到devices add/delete/update事件发生时,会更新到
kubelet_internal_checkpoint
文件中。当device plugin的stop time超过grace period time(代码写死为5min,不可配置),会从checkpoint中删除对应的devices。在这个时间范围内,Device Manager会继续缓存该endpoint及对应的devices。
为Container Allocate Devices后,也会将PodDevices更新到checkpoint中。
我们来看看callback的实现genericDeviceUpdateCallback
的实现,了解Device Manager是如何处理devices的add/delete/update消息的。
pkg/kubelet/cm/devicemanager/manager.go:134 func (m *ManagerImpl) genericDeviceUpdateCallback(resourceName string, added, updated, deleted []pluginapi.Device) { kept := append(updated, added...) m.mutex.Lock() if _, ok := m.healthyDevices[resourceName]; !ok { m.healthyDevices[resourceName] = sets.NewString() } if _, ok := m.unhealthyDevices[resourceName]; !ok { m.unhealthyDevices[resourceName] = sets.NewString() } for _, dev := range kept { if dev.Health == pluginapi.Healthy { m.healthyDevices[resourceName].Insert(dev.ID) m.unhealthyDevices[resourceName].Delete(dev.ID) } else { m.unhealthyDevices[resourceName].Insert(dev.ID) m.healthyDevices[resourceName].Delete(dev.ID) } } for _, dev := range deleted { m.healthyDevices[resourceName].Delete(dev.ID) m.unhealthyDevices[resourceName].Delete(dev.ID) } m.mutex.Unlock() m.writeCheckpoint() }
将callback中收到的devices状态是
Healthy
,那么将device ID插入到ManagerImpl中healthDevices中,并从unhealthyDevices中删除。将callback中收到的devices状态是
Unhealthy
,那么将device ID插入到ManagerImpl中unhealthDevices中,并从healthyDevices中删除。将device plugin反馈的需要delete的devices从healthDevices和unhealthDevices中一并删除。
将ManagerImpl中的数据更新到checkpoint文件中。
Device Manager的启动
前面把Device Manager的创建流程分析了一下,还涉及到checkpoint和callback的分析。接下来,我们继续对Device Manager的Start流程进行分析。
Start Device Manager
Device Manager是在containerManagerImpl的Start时启动的。
pkg/kubelet/cm/container_manager_linux.go:527 func (cm *containerManagerImpl) Start(node *v1.Node, activePods ActivePodsFunc, sourcesReady config.SourcesReady, podStatusProvider status.PodStatusProvider, runtimeService internalapi.RuntimeService) error { ... // Starts device manager. if err := cm.deviceManager.Start(devicemanager.ActivePodsFunc(activePods), sourcesReady); err != nil { return err } return nil }
deviceManager.Start的第一个参数是获取该节点的active(non-terminated)Pods的函数。
SourcesReady是用来跟踪kubelet配置的Pod Sources,这些Sources包括:
file: 通过static file创建静态Pods。
http: 通过http接口来获取Pods信息。
api: 从Kubernetes API Server获取Pods信息,是Kubernetes默认的内部机制。
*: 表示包含以上全部的Sources类型。
ManagerIml Start
ManagerIml.Start负责启动Device Manager,对外提供gRPC服务。
pkg/kubelet/cm/devicemanager/manager.go:204 // Start starts the Device Plugin Manager amd start initialization of // podDevices and allocatedDevices information from checkpoint-ed state and // starts device plugin registration service. func (m *ManagerImpl) Start(activePods ActivePodsFunc, sourcesReady config.SourcesReady) error { m.activePods = activePods m.sourcesReady = sourcesReady // Loads in allocatedDevices information from disk. err := m.readCheckpoint() ... socketPath := filepath.Join(m.socketdir, m.socketname) os.MkdirAll(m.socketdir, 0755) // Removes all stale sockets in m.socketdir. Device plugins can monitor // this and use it as a signal to re-register with the new Kubelet. if err := m.removeContents(m.socketdir); err != nil { glog.Errorf("Fail to clean up stale contents under %s: %+v", m.socketdir, err) } s, err := net.Listen("unix", socketPath) if err != nil { glog.Errorf(errListenSocket+" %+v", err) return err } m.server = grpc.NewServer([]grpc.ServerOption{}...) pluginapi.RegisterRegistrationServer(m.server, m) go m.server.Serve(s) glog.V(2).Infof("Serving device plugin registration server on %q", socketPath) return nil }
首先读取checkpoint file中数据,恢复ManagerImpl的相关数据,包括:
podDevices;
allocatedDevices;
healthyDevices;
unhealthyDevices;
endpoints,注意这里会将endpoint的stop time设置为当前时间,意味着kubelet restart后,需要等待device plugin进行re-register后,才认为这些resource是可用的。
然后将
/var/lib/kubelet/device-plugins/
下面的所有文件清空,当然checkpiont文件除外,也就是清空所有的socket文件,包括自己的kubelet.sock,以及其他所有之前的device plugin的socket文件。device plugin会监控kubelet.sock文件是否被删除,如果删除,则会触发自己的向kubelet重新注册自己。创建kubelet.sock并启动gRPC Server对外提供gRPC服务,目前只注册了Register服务,用于Device plugin调用进行插件注册。
Register服务
我们就来看看kubelet Device Manager对外提供的唯一gRPC接口Register。
Register
pkg/kubelet/cm/devicemanager/manager.go:289 // Register registers a device plugin. func (m *ManagerImpl) Register(ctx context.Context, r *pluginapi.RegisterRequest) (*pluginapi.Empty, error) { glog.Infof("Got registration request from device plugin with resource name %q", r.ResourceName) metrics.DevicePluginRegistrationCount.WithLabelValues(r.ResourceName).Inc() var versionCompatible bool for _, v := range pluginapi.SupportedVersions { if r.Version == v { versionCompatible = true break } } if !versionCompatible { errorString := fmt.Sprintf(errUnsupportedVersion, r.Version, pluginapi.SupportedVersions) glog.Infof("Bad registration request from device plugin with resource name %q: %v", r.ResourceName, errorString) return &pluginapi.Empty{}, fmt.Errorf(errorString) } if !v1helper.IsExtendedResourceName(v1.ResourceName(r.ResourceName)) { errorString := fmt.Sprintf(errInvalidResourceName, r.ResourceName) glog.Infof("Bad registration request from device plugin: %v", errorString) return &pluginapi.Empty{}, fmt.Errorf(errorString) } // TODO: for now, always accepts newest device plugin. Later may consider to // add some policies here, e.g., verify whether an old device plugin with the // same resource name is still alive to determine whether we want to accept // the new registration. go m.addEndpoint(r) return &pluginapi.Empty{}, nil }
注册请求是device plugin向kubelet发送的,注册请求RegisterRequest为:
type RegisterRequest struct { Version string // Kubernetes 1.10对应的device plugin api version为v1beta1 Endpoint string // device plugin对应的socket name ResourceName string Options *DevicePluginOptions }
这里会检查注册的Resource Name是否符合Extended Resource的规则:
Resource Name不能属于kubernetes.io,得有自己的domain,比如nvidia.com。
Resource Name中不能包含
requests.
前缀。对应的Resource value只能是整数值。
调用addEndpoint进行插件注册。
addEndpoint进行device plugin注册
从上面Register的方法中可见,真正插件注册的逻辑是在addEndpoint中实现的。
pkg/kubelet/cm/devicemanager/manager.go:332 func (m *ManagerImpl) addEndpoint(r *pluginapi.RegisterRequest) { existingDevs := make(map[string]pluginapi.Device) m.mutex.Lock() old, ok := m.endpoints[r.ResourceName] if ok && old != nil { // Pass devices of previous endpoint into re-registered one, // to avoid potential orphaned devices upon re-registration devices := make(map[string]pluginapi.Device) for _, device := range old.getDevices() { devices[device.ID] = device } existingDevs = devices } m.mutex.Unlock() socketPath := filepath.Join(m.socketdir, r.Endpoint) e, err := newEndpointImpl(socketPath, r.ResourceName, existingDevs, m.callback) if err != nil { glog.Errorf("Failed to dial device plugin with request %v: %v", r, err) return } m.mutex.Lock() if r.Options != nil { m.pluginOpts[r.ResourceName] = r.Options } // Check for potential re-registration during the initialization of new endpoint, // and skip updating if re-registration happens. // TODO: simplify the part once we have a better way to handle registered devices ext := m.endpoints[r.ResourceName] if ext != old { glog.Warningf("Some other endpoint %v is added while endpoint %v is initialized", ext, e) m.mutex.Unlock() e.stop() return } // Associates the newly created endpoint with the corresponding resource name. // Stops existing endpoint if there is any. m.endpoints[r.ResourceName] = e glog.V(2).Infof("Registered endpoint %v", e) m.mutex.Unlock() if old != nil { old.stop() } go func() { e.run() e.stop() m.mutex.Lock() if old, ok := m.endpoints[r.ResourceName]; ok && old == e { m.markResourceUnhealthy(r.ResourceName) } glog.V(2).Infof("Unregistered endpoint %v", e) m.mutex.Unlock() }() }
首先检查注册的这个device plugin是否已经注册过,如果注册过,则获取已经缓存的devices。
再检查device plugin的socket是否能dial成功,如果dial失败,则说明device plugin没正常启动。如果dial成功,就根据已经缓存的devices重新初始化Endpoint,EndpointImpl的定义如下:
type endpointImpl struct { client pluginapi.DevicePluginClient clientConn *grpc.ClientConn socketPath string resourceName string stopTime time.Time devices map[string]pluginapi.Device mutex sync.Mutex cb monitorCallback }
为了防止在EndpointImpl重新初始化的过程中device plugin进行re-register,初始化完成后再次获取缓存中该device plugin的Endpoint,并与初始化之前的Endpoint对象进行比对:
如果不是同一个对象,则说明在初始化过程中发生了re-register,那么就invoke Endpoint的stop接口,关闭gRPC连接,并设置Endpoint的stopTime为当前时间,Register流程以失败结束。
否则继续后面流程。
如果该device plugin之前注册过,那么再重新调用Endpoint的run()启动之前,先调用Endpoint的stop关闭gRPC连接,并设置Endpoint的stopTime为当前时间。
然后启动golang协程执行Endpoint的run(),在run方法中:
调用device plugin的ListAndWatch gRPC接口,通过长连接持续获取ListAndWatch gRPC stream,
从stream流中获取的devices与Endpoint中缓存的devices进行比对,得到需要add/delete/update的devices,
然后调用Endpoint的callback(也就是ManagerImpl注册的callback方法genericDeviceUpdateCallback)进行Device Manager的缓存更新并写到checkpoint文件中。
直到与device plugin的gRPC连接发生errListAndWatch错误,跳出持续获取stream的死循环,然后调用Endpoint的stop关闭gRPC连接,并设置Endpoint的stopTime为当前时间。
invoke stop后,再标记该device plugin对应的所有devices为unhealthy,即设置healthyDevices为空, 所有原来healthy的devices都加到unhealthyDevices中,此时表示注册失败。
调用Device Plugin的Allocate接口
注册UpdatePluginResources为Pod Admit Handler
kubelet在NewMainKubelet中会注册一系列的Pod Admit Handler,当有Pod需要创建的时,都会先调用这些Pod Admit Handler进行处理,其中klet.containerManager.UpdatePluginResources
就是kubelet Device Manager为Pod分配devices的。
pkg/kubelet/kubelet.go:893 func NewMainKubelet( ... ) (*Kubelet, error) { ... klet.admitHandlers.AddPodAdmitHandler(lifecycle.NewPredicateAdmitHandler(klet.getNodeAnyWay, criticalPodAdmissionHandler, klet.containerManager.UpdatePluginResources)) ... } pkg/kubelet/cm/container_manager_linux.go:618 func (cm *containerManagerImpl) UpdatePluginResources(node *schedulercache.NodeInfo, attrs *lifecycle.PodAdmitAttributes) error { return cm.deviceManager.Allocate(node, attrs) }
Allocate
kubelet在创建Pod前,会invoke Device Manager的Allocate方法,为Pod中的每个Container请求分配对应的devices,kubelet会将请求转发到对应的Endpoint的Allocate方法, 然后请求会到对应的device plugin进行处理。
pkg/kubelet/cm/devicemanager/manager.go:259 func (m *ManagerImpl) Allocate(node *schedulercache.NodeInfo, attrs *lifecycle.PodAdmitAttributes) error { pod := attrs.Pod devicesToReuse := make(map[string]sets.String) // TODO: Reuse devices between init containers and regular containers. for _, container := range pod.Spec.InitContainers { if err := m.allocateContainerResources(pod, &container, devicesToReuse); err != nil { return err } m.podDevices.addContainerAllocatedResources(string(pod.UID), container.Name, devicesToReuse) } for _, container := range pod.Spec.Containers { if err := m.allocateContainerResources(pod, &container, devicesToReuse); err != nil { return err } m.podDevices.removeContainerAllocatedResources(string(pod.UID), container.Name, devicesToReuse) } m.mutex.Lock() defer m.mutex.Unlock() // quick return if no pluginResources requested if _, podRequireDevicePluginResource := m.podDevices[string(pod.UID)]; !podRequireDevicePluginResource { return nil } m.sanitizeNodeAllocatable(node) return nil }
调用allocateContainerResources为Pod中的init container分配devices,并更新ManagerImpl中PodDevices缓存;
调用allocateContainerResources为Pod中的regular container分配devices,并更新ManagerImpl中PodDevices缓存;
调用sanitizeNodeAllocatable更新scheduler cache中Node对应Resource Name的Allocatable Resource;
allocateContainerResources
pkg/kubelet/cm/devicemanager/manager.go:608 func (m *ManagerImpl) allocateContainerResources(pod *v1.Pod, container *v1.Container, devicesToReuse map[string]sets.String) error { podUID := string(pod.UID) contName := container.Name allocatedDevicesUpdated := false // Extended resources are not allowed to be overcommitted. // Since device plugin advertises extended resources, // therefore Requests must be equal to Limits and iterating // over the Limits should be sufficient. for k, v := range container.Resources.Limits { resource := string(k) needed := int(v.Value()) glog.V(3).Infof("needs %d %s", needed, resource) if !m.isDevicePluginResource(resource) { continue } // Updates allocatedDevices to garbage collect any stranded resources // before doing the device plugin allocation. if !allocatedDevicesUpdated { m.updateAllocatedDevices(m.activePods()) allocatedDevicesUpdated = true } allocDevices, err := m.devicesToAllocate(podUID, contName, resource, needed, devicesToReuse[resource]) if err != nil { return err } if allocDevices == nil || len(allocDevices) <= 0 { continue } startRPCTime := time.Now() m.mutex.Lock() e, ok := m.endpoints[resource] m.mutex.Unlock() if !ok { m.mutex.Lock() m.allocatedDevices = m.podDevices.devices() m.mutex.Unlock() return fmt.Errorf("Unknown Device Plugin %s", resource) } devs := allocDevices.UnsortedList() glog.V(3).Infof("Making allocation request for devices %v for device plugin %s", devs, resource) resp, err := e.allocate(devs) metrics.DevicePluginAllocationLatency.WithLabelValues(resource).Observe(metrics.SinceInMicroseconds(startRPCTime)) if err != nil { m.mutex.Lock() m.allocatedDevices = m.podDevices.devices() m.mutex.Unlock() return err } // Update internal cached podDevices state. m.mutex.Lock() m.podDevices.insert(podUID, contName, resource, allocDevices, resp.ContainerResponses[0]) m.mutex.Unlock() } // Checkpoints device to container allocation information. return m.writeCheckpoint() }
device plugin提供的Resource属于Kubernetes Extended Resources,所以其Resource QoS只能是Guaranted。
每次在为Pod分配devices之前,都去检查一下此时的active pods,并与podDevices缓存中的pods进行比对,将已经terminated的Pods的devices从podDevices中删除,即进行了devices的GC操作。
从healthyDevices中随机分配对应数量的devices给该Pod,并注意更新allocatedDevices,否则会导致一个device被分配给多个Pod。
拿到devices后,就调用Endpoint的Allocate方法(进而调用对应device plugin的Allocate gRPC Service),device plugin返回ContainerAllocateResponse(包括注入的环境变量、挂载信息、Annotations)。
更新podDevices缓存信息,并将ManagerImpl中缓存数据更新到checkpoint文件中。
思考:当init container结束后,对应分配的devices会被释放吗? 目前还不会释放devices,在Allocate前只会回收Terminated Pods的devices,并没有回收init container的devices。要优化这个也是比较简单的,只要修改上面代码中updateAllocatedDevices方法内的逻辑就行了,增加init container的devices回收逻辑。
所以当前版本最好不会要在init container中使用devices,虽然这种场景几乎不存在。
维护NodeStatus中Device Plugin管理的Resource Capacity
当kubelet更新node status时会调用GetCapacity更新device plugins对应的Resource信息。
pkg/kubelet/kubelet_node_status.go:599 func (kl *Kubelet) setNodeStatusMachineInfo(node *v1.Node) { ... devicePluginCapacity, devicePluginAllocatable, removedDevicePlugins = kl.containerManager.GetDevicePluginResourceCapacity() ... } pkg/kubelet/cm/container_manager_linux.go:881 func (cm *containerManagerImpl) GetDevicePluginResourceCapacity() (v1.ResourceList, v1.ResourceList, []string) { return cm.deviceManager.GetCapacity() }
下面是GetCapacity的具体代码实现,逻辑很简单:
检测healthyDevices对应的device plugin是否已经从缓存中删除或者已经停止超过5min,如果满足以上条件之一,则从endpoints和healthyDevices缓存中删除这些devices。
检测unhealthyDevices对应的device plugin是否已经从缓存中删除或者已经停止超过5min,如果满足以上条件之一,则从endpoints和unhealthyDevices缓存中删除这些devices。
如果缓存发生变化,则更新到checkpoint文件中。
pkg/kubelet/cm/devicemanager/manager.go:414 func (m *ManagerImpl) GetCapacity() (v1.ResourceList, v1.ResourceList, []string) { needsUpdateCheckpoint := false var capacity = v1.ResourceList{} var allocatable = v1.ResourceList{} deletedResources := sets.NewString() m.mutex.Lock() for resourceName, devices := range m.healthyDevices { e, ok := m.endpoints[resourceName] if (ok && e.stopGracePeriodExpired()) || !ok { if !ok { glog.Errorf("unexpected: healthyDevices and endpoints are out of sync") } delete(m.endpoints, resourceName) delete(m.healthyDevices, resourceName) deletedResources.Insert(resourceName) needsUpdateCheckpoint = true } else { capacity[v1.ResourceName(resourceName)] = *resource.NewQuantity(int64(devices.Len()), resource.DecimalSI) allocatable[v1.ResourceName(resourceName)] = *resource.NewQuantity(int64(devices.Len()), resource.DecimalSI) } } for resourceName, devices := range m.unhealthyDevices { e, ok := m.endpoints[resourceName] if (ok && e.stopGracePeriodExpired()) || !ok { if !ok { glog.Errorf("unexpected: unhealthyDevices and endpoints are out of sync") } delete(m.endpoints, resourceName) delete(m.unhealthyDevices, resourceName) deletedResources.Insert(resourceName) needsUpdateCheckpoint = true } else { capacityCount := capacity[v1.ResourceName(resourceName)] unhealthyCount := *resource.NewQuantity(int64(devices.Len()), resource.DecimalSI) capacityCount.Add(unhealthyCount) capacity[v1.ResourceName(resourceName)] = capacityCount } } m.mutex.Unlock() if needsUpdateCheckpoint { m.writeCheckpoint() } return capacity, allocatable, deletedResources.UnsortedList() }
GetCapacity更新NodeStatus如下数据:
registered device plugin resource Capacity
registered device plugin resource Allocatable
previously registered resources that are no longer active
调用Device Plugin的PreStartContainer接口
在kubelet的GetResource中,会调用DeviceManager的GetDeviceRunContainerOptions,并将这些options添加到kubecontainer.RunContainerOptions
中。RunContainerOptions包括Envs、Mounts、Devices、PortMappings、Annotations等信息。
pkg/kubelet/cm/container_manager_linux.go:601 // TODO: move the GetResources logic to PodContainerManager. func (cm *containerManagerImpl) GetResources(pod *v1.Pod, container *v1.Container) (*kubecontainer.RunContainerOptions, error) { opts := &kubecontainer.RunContainerOptions{} // Allocate should already be called during predicateAdmitHandler.Admit(), // just try to fetch device runtime information from cached state here devOpts, err := cm.deviceManager.GetDeviceRunContainerOptions(pod, container) if err != nil { return nil, err } else if devOpts == nil { return opts, nil } opts.Devices = append(opts.Devices, devOpts.Devices...) opts.Mounts = append(opts.Mounts, devOpts.Mounts...) opts.Envs = append(opts.Envs, devOpts.Envs...) opts.Annotations = append(opts.Annotations, devOpts.Annotations...) return opts, nil }
Device Manager的GetDeviceRunContainerOptions会根据pluginOpts的PreStartRequired是否为true,决定是否调用device plugin的PreStartContainer gRPC Service。
注意:如果某个device plugin的PreStartRequired为true,那么需要注册kubelet Device Manager调用device plugin的PreStartContainer接口的超时时间是30s,即30s内必须完成PreStartContainer的逻辑并返回。
pkg/kubelet/cm/devicemanager/manager.go:688 // GetDeviceRunContainerOptions checks whether we have cached containerDevices // for the passed-inand returns its DeviceRunContainerOptions // for the found one. An empty struct is returned in case no cached state is found. func (m *ManagerImpl) GetDeviceRunContainerOptions(pod *v1.Pod, container *v1.Container) (*DeviceRunContainerOptions, error) { podUID := string(pod.UID) contName := container.Name for k := range container.Resources.Limits { resource := string(k) if !m.isDevicePluginResource(resource) { continue } err := m.callPreStartContainerIfNeeded(podUID, contName, resource) if err != nil { return nil, err } } m.mutex.Lock() defer m.mutex.Unlock() return m.podDevices.deviceRunContainerOptions(string(pod.UID), container.Name), nil }
然后deviceRunContainerOptions负责封装Container的Envs、Mount points、Device files、Annotations。
到此,关于“Device Manager在什么时候创建”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
文章标题:DeviceManager在什么时候创建
网址分享:http://pcwzsj.com/article/jpiejp.html