Hive中Join的原理和机制是什么
本篇内容介绍了“Hive中Join的原理和机制是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
永靖网站建设公司创新互联,永靖网站设计制作,有大型网站制作公司丰富经验。已为永靖超过千家提供企业网站建设服务。企业网站搭建\外贸营销网站建设要多少钱,请找那个售后服务好的永靖做网站的公司定做!
九、Hive中Join的原理和机制
笼统的说,Hive中的Join可分为Common Join(Reduce阶段完成join)和Map Join(Map阶段完成join)。本文简单介绍一下两种join的原理和机制。
9.1 Hive Common Join
如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join.
整个过程包含Map、Shuffle、Reduce阶段。
Map阶段
读取源表的数据,Map输出时候以Join on条件中的列为key,如果Join有多个关联键,则以这些关联键的组合作为key;
Map输出的value为join之后所关心的(select或者where中需要用到的)列;同时在value中还会包含表的Tag信息,用于标明此value对应哪个表;
按照key进行排序
Shuffle阶段
根据key的值进行hash,并将key/value按照hash值推送至不同的reduce中,这样确保两个表中相同的key位于同一个reduce中
Reduce阶段
根据key的值完成join操作,期间通过Tag来识别不同表中的数据。
以下面的HQL为例,图解其过程:
SELECT
a.id,a.dept,b.age
FROM a join b
ON (a.id = b.id);
看了这个图,应该知道如何使用MapReduce进行join操作了吧。
9.2 Hive Map Join
MapJoin通常用于一个很小的表和一个大表进行join的场景,具体小表有多小,由参数hive.mapjoin.smalltable.filesize来决定,该参数表示小表的总大小,默认值为25000000字节,即25M。
Hive0.7之前,需要使用hint提示 /*+ mapjoin(table) */才会执行MapJoin,否则执行Common Join,但在0.7版本之后,默认自动会转换Map Join,由参数hive.auto.convert.join来控制,默认为true.
仍然以9.1中的HQL来说吧,假设a表为一张大表,b为小表,并且hive.auto.convert.join=true,那么Hive在执行时候会自动转化为MapJoin。
如图中的流程,首先是Task A,它是一个Local Task(在客户端本地执行的Task),负责扫描小表b的数据,将其转换成一个HashTable的数据结构,并写入本地的文件中,之后将该文件加载到DistributeCache中,该HashTable的数据结构可以抽象为:
key | value |
1 | 26 |
2 | 34 |
图中红框圈出了执行Local Task的信息。
接下来是Task B,该任务是一个没有Reduce的MR,启动MapTasks扫描大表a,在Map阶段,根据a的每一条记录去和DistributeCache中b表对应的HashTable关联,并直接输出结果。
由于MapJoin没有Reduce,所以由Map直接输出结果文件,有多少个Map Task,就有多少个结果文件。
“Hive中Join的原理和机制是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
分享文章:Hive中Join的原理和机制是什么
网站URL:http://pcwzsj.com/article/jgjigo.html