spark中的DRA怎么开启

这篇文章主要讲解了“spark中的DRA怎么开启”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“spark中的DRA怎么开启”吧!

企业建站必须是能够以充分展现企业形象为主要目的,是企业文化与产品对外扩展宣传的重要窗口,一个合格的网站不仅仅能为公司带来巨大的互联网上的收集和信息发布平台,成都创新互联公司面向各种领域:成都石凉亭网站设计营销型网站建设解决方案、网站设计等建站排名服务。


spark on yarn 中的DynamicResourceAllocation

spark on yarn对于DynamicResourceAllocation分配来说,从spark 1.2版本就已经开始支持了.
对于spark熟悉的人都知道,如果我们要开启DynamicResourceAllocation,就得有ExternalShuffleService服务,
对于yarn来说ExternalShuffleService是作为辅助服务开启的,具体配置如下:


   yarn.nodemanager.aux-services
   spark_shuffle



   yarn.nodemanager.aux-services.spark_shuffle.class
   org.apache.spark.network.yarn.YarnShuffleService



   spark.shuffle.service.port
   7337

重启nodeManager,这样在每个nodeManager节点就会启动一个YarnShuffleService,之后在spark应用中设置spark.dynamicAllocation.enabled 为true,这样就能达到运行时资源动态分配的效果

我们直接从CoarseGrainedExecutorBackend中SparkEnv创建开始说,每一个executor的启动,必然会经过CoarseGrainedExecutorBackend main方法,而main中就涉及到SparkEnv的创建

 val env = SparkEnv.createExecutorEnv(driverConf, arguments.executorId, arguments.bindAddress,
       arguments.hostname, arguments.cores, cfg.ioEncryptionKey, isLocal = false)

而sparkEnv的创建就涉及到BlockManager的创建。沿着代码往下走,最终

val blockTransferService =
     new NettyBlockTransferService(conf, securityManager, bindAddress, advertiseAddress,
       blockManagerPort, numUsableCores, blockManagerMaster.driverEndpoint)
val blockManager = new BlockManager(
     executorId,
     rpcEnv,
     blockManagerMaster,
     serializerManager,
     conf,
     memoryManager,
     mapOutputTracker,
     shuffleManager,
     blockTransferService,
     securityManager,
     externalShuffleClient)

在blockManager的initialize方法中,就会进行registerWithExternalShuffleServer

 // Register Executors' configuration with the local shuffle service, if one should exist.
   if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
     registerWithExternalShuffleServer()
   }

如果我们开启了ExternalShuffleService,对于yarn就是YarnShuffleService,就会把当前的ExecutorShuffleInfo注册到host为shuffleServerId.host, port为shuffleServerId.port的ExternalShuffleService中,ExecutorShuffleInfo的信息如下:

val shuffleConfig = new ExecutorShuffleInfo(
     diskBlockManager.localDirsString,
     diskBlockManager.subDirsPerLocalDir,
     shuffleManager.getClass.getName)

这里我重点分析一下registerWithExternalShuffleServer的方法中的以下片段

// Synchronous and will throw an exception if we cannot connect.
       blockStoreClient.asInstanceOf[ExternalBlockStoreClient].registerWithShuffleServer(
         shuffleServerId.host, shuffleServerId.port, shuffleServerId.executorId, shuffleConfig)

该代码中shuffleServerId来自于:

shuffleServerId = if (externalShuffleServiceEnabled) {
     logInfo(s"external shuffle service port = $externalShuffleServicePort")
     BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
   } else {
     blockManagerId
   }

而blockTransferService.hostName 是我们在SparkEnv中创建的时候由advertiseAddress传过来的,
最终由CoarseGrainedExecutorBackend 主类参数hostname过来的,那到底怎么传过来的呢? 参照ExecutorRunnable的prepareCommand方法,

val commands = prefixEnv ++
     Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
     javaOpts ++
     Seq("org.apache.spark.executor.YarnCoarseGrainedExecutorBackend",
       "--driver-url", masterAddress,
       "--executor-id", executorId,
       "--hostname", hostname,
       "--cores", executorCores.toString,
       "--app-id", appId,
       "--resourceProfileId", resourceProfileId.toString) ++

而这个hostname的值最终由YarnAllocator的方法runAllocatedContainers

val executorHostname = container.getNodeId.getHost

传递过来的,也就是说我们最终获取到了yarn节点,也就是nodeManager的host这样每个启动的executor,就向executor所在的nodeManager的YarnShuffleService注册了ExecutorShuffleInfo信息,这样对于开启了动态资源分配的
ExternalBlockStoreClient 来说fetchBlocksg过程就和未开启动态资源分配的NettyBlockTransferService大同小异了

spark on k8s(kubernetes) 中的DynamicResourceAllocation

参考之前的文章,我们知道在entrypoint中我们在启动executor的时候,我们传递了hostname参数

executor)
    shift 1
    CMD=(
      ${JAVA_HOME}/bin/java
      "${SPARK_EXECUTOR_JAVA_OPTS[@]}"
      -Xms$SPARK_EXECUTOR_MEMORY
      -Xmx$SPARK_EXECUTOR_MEMORY
      -cp "$SPARK_CLASSPATH:$SPARK_DIST_CLASSPATH"
      org.apache.spark.executor.CoarseGrainedExecutorBackend
      --driver-url $SPARK_DRIVER_URL
      --executor-id $SPARK_EXECUTOR_ID
      --cores $SPARK_EXECUTOR_CORES
      --app-id $SPARK_APPLICATION_ID
      --hostname $SPARK_EXECUTOR_POD_IP
    )

而SPARK_EXECUTOR_POD_IP是运行中的POD IP,参考BasicExecutorFeatureStep类片段:

Seq(new EnvVarBuilder()
          .withName(ENV_EXECUTOR_POD_IP)
          .withValueFrom(new EnvVarSourceBuilder()
            .withNewFieldRef("v1", "status.podIP")
            .build())
          .build())

这样按照以上流程的分析,
executor也不能向k8s节点ExternalShuffleService服务注册,因为我们注册的节点是POD IP,而不是节点IP,
当然spark社区早就提出了未开启external shuffle service的动态资源分配,且已经合并到master分支. 具体配置,可以参照如下:

spark.dynamicAllocation.enabled  true 
spark.dynamicAllocation.shuffleTracking.enabled  true
spark.dynamicAllocation.minExecutors  1
spark.dynamicAllocation.maxExecutors  4
spark.dynamicAllocation.executorIdleTimeout	 60s

感谢各位的阅读,以上就是“spark中的DRA怎么开启”的内容了,经过本文的学习后,相信大家对spark中的DRA怎么开启这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网站题目:spark中的DRA怎么开启
文章起源:http://pcwzsj.com/article/jgiooj.html