将自己的数据集制作成TFRecord格式教程-创新互联
在使用TensorFlow训练神经网络时,首先面临的问题是:网络的输入
创新互联建站是一家专注于网站制作、成都做网站与策划设计,东坡网站建设哪家好?创新互联建站做网站,专注于网站建设10年,网设计领域的专业建站公司;建站业务涵盖:东坡等地区。东坡做网站价格咨询:18982081108此篇文章,教大家将自己的数据集制作成TFRecord格式,feed进网络,除了TFRecord格式,TensorFlow也支持其他格
式的数据,此处就不再介绍了。建议大家使用TFRecord格式,在后面可以通过api进行多线程的读取文件队列。
1. 原本的数据集
此时,我有两类图片,分别是xiansu100,xiansu60,每一类中有10张图片。
2.制作成TFRecord格式
tfrecord会根据你选择输入文件的类,自动给每一类打上同样的标签。如在本例中,只有0,1 两类,想知道文件夹名与label关系的,可以自己保存起来。
#生成整数型的属性 def _int64_feature(value): return tf.train.Feature(int64_list = tf.train.Int64List(value = [value])) #生成字符串类型的属性 def _bytes_feature(value): return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value])) #制作TFRecord格式 def createTFRecord(filename,mapfile): class_map = {} data_dir = '/home/wc/DataSet/traffic/testTFRecord/' classes = {'xiansu60','xiansu100'} #输出TFRecord文件的地址 writer = tf.python_io.TFRecordWriter(filename) for index,name in enumerate(classes): class_path=data_dir+name+'/' class_map[index] = name for img_name in os.listdir(class_path): img_path = class_path + img_name #每个图片的地址 img = Image.open(img_path) img= img.resize((224,224)) img_raw = img.tobytes() #将图片转化成二进制格式 example = tf.train.Example(features = tf.train.Features(feature = { 'label':_int64_feature(index), 'image_raw': _bytes_feature(img_raw) })) writer.write(example.SerializeToString()) writer.close() txtfile = open(mapfile,'w+') for key in class_map.keys(): txtfile.writelines(str(key)+":"+class_map[key]+"\n") txtfile.close()
本文标题:将自己的数据集制作成TFRecord格式教程-创新互联
分享路径:http://pcwzsj.com/article/jggjd.html