Python怎么实现LSTM时间序列预测

本篇内容主要讲解“Python怎么实现LSTM时间序列预测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python怎么实现LSTM时间序列预测”吧!

站在用户的角度思考问题,与客户深入沟通,找到抚州网站设计与抚州网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站制作、企业官网、英文网站、手机端网站、网站推广、主机域名、虚拟空间、企业邮箱。业务覆盖抚州地区。

参考数据:

数据一共两列,左边是日期,右边是乘客数量

Python怎么实现LSTM时间序列预测


对数据做可视化:

import math
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from pandas import read_csv 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
#load dataset 
dataframe = read_csv('./international-airline-passengers.csv',usecols =[1],header = None,engine = 'python',skipfooter = 3)
dataset = dataframe.values
#将整型变为float
dataset = dataset.astype('float32')
plt.plot(dataset)
plt.show()

可视化结果:

Python怎么实现LSTM时间序列预测

下面开始进行建模:

完整代码:

import math
import numpy 
import pandas as pd 
import matplotlib.pyplot as plt 
from pandas import read_csv 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
def create_dataset(dataset,look_back = 1):
	dataX,dataY = [],[]
	for i in range(len(dataset) - look_back - 1):
		a = dataset[i:i+look_back,0]
		b = dataset[i+look_back,0]
		dataX.append(a)
		dataY.append(b)
	return numpy.array(dataX),numpy.array(dataY)
numpy.random.seed(7)
dataframe = read_csv('./international-airline-passengers.csv',usecols = [1],header = None,engine = 'python')
dataset = dataframe.values
dataset = dataset.astype('float32')
scaler = MinMaxScaler(feature_range = (0,1))
dataset = scaler.fit_transform(dataset)
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train,test = dataset[0:train_size,:],dataset[train_size:len(dataset),:]
look_back = 1
trainX,trainY = create_dataset(train,look_back)
testX,testY = create_dataset(test,look_back)
#reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX,(trainX.shape[0],look_back,trainX.shape[1]))
testX = numpy.reshape(testX,(testX.shape[0],look_back,testX.shape[1]))
#create and fit the LSTM network 
model = Sequential()
model.add(LSTM(4,input_shape = (1,look_back)))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error',optimizer = 'adam')
model.fit(trainX,trainY,epochs = 100,batch_size = 1,verbose = 2)
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

运行结果:

Python怎么实现LSTM时间序列预测

Python怎么实现LSTM时间序列预测

到此,相信大家对“Python怎么实现LSTM时间序列预测”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


文章标题:Python怎么实现LSTM时间序列预测
分享路径:http://pcwzsj.com/article/jchddd.html