java中CountDownLatch和CyclicBarrier有什么区别
这篇文章主要为大家展示了java中CountDownLatch和CyclicBarrier有什么区别,内容简而易懂,希望大家可以学习一下,学习完之后肯定会有收获的,下面让小编带大家一起来看看吧。
为昌黎等地区用户提供了全套网页设计制作服务,及昌黎网站建设行业解决方案。主营业务为网站制作、做网站、昌黎网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
前言
CountDownLatch和CyclicBarrier两个同为java并发编程的重要工具类,它们在诸多多线程并发或并行场景中得到了广泛的应用。但两者就其内部实现和使用场景而言是各有所侧重的。
内部实现差异
前者更多依赖经典的AQS机制和CAS机制来控制器内部状态的更迭和计数器本身的变化,而后者更多依靠可重入Lock等机制来控制其内部并发安全性和一致性。
public class { //Synchronization control For CountDownLatch. //Uses AQS state to represent count. private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; Sync(int count) { setState(count); } int getCount() { return getState(); } protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { int c = getState(); if (c == 0) return false; int nextc = c-1; if (compareAndSetState(c, nextc)) return nextc == 0; } } } private final Sync sync; ... ...// }
public class CyclicBarrier { /** * Each use of the barrier is represented as a generation instance. * The generation changes whenever the barrier is tripped, or * is reset. There can be many generations associated with threads * using the barrier - due to the non-deterministic way the lock * may be allocated to waiting threads - but only one of these * can be active at a time (the one to which {@code count} applies) * and all the rest are either broken or tripped. * There need not be an active generation if there has been a break * but no subsequent reset. */ private static class Generation { boolean broken = false; } /** The lock for guarding barrier entry */ private final ReentrantLock lock = new ReentrantLock(); /** Condition to wait on until tripped */ private final Condition trip = lock.newCondition(); /** The number of parties */ private final int parties; /* The command to run when tripped */ private final Runnable barrierCommand; /** The current generation */ private Generation generation = new Generation(); /** * Number of parties still waiting. Counts down from parties to 0 * on each generation. It is reset to parties on each new * generation or when broken. */ private int count; /** * Updates state on barrier trip and wakes up everyone. * Called only while holding lock. */ private void nextGeneration() { // signal completion of last generation trip.signalAll(); // set up next generation count = parties; generation = new Generation(); } /** * Sets current barrier generation as broken and wakes up everyone. * Called only while holding lock. */ private void breakBarrier() { generation.broken = true; count = parties; trip.signalAll(); } /** * Main barrier code, covering the various policies. */ private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException { final ReentrantLock lock = this.lock; lock.lock(); try { final Generation g = generation; if (g.broken) throw new BrokenBarrierException(); if (Thread.interrupted()) { breakBarrier(); throw new InterruptedException(); } int index = --count; if (index == 0) { // tripped boolean ranAction = false; try { final Runnable command = barrierCommand; if (command != null) command.run(); ranAction = true; nextGeneration(); return 0; } finally { if (!ranAction) breakBarrier(); } } // loop until tripped, broken, interrupted, or timed out for (;;) { try { if (!timed) trip.await(); else if (nanos > 0L) nanos = trip.awaitNanos(nanos); } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { // We're about to finish waiting even if we had not // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. Thread.currentThread().interrupt(); } } if (g.broken) throw new BrokenBarrierException(); if (g != generation) return index; if (timed && nanos <= 0L) { breakBarrier(); throw new TimeoutException(); } } } finally { lock.unlock(); } } ... ... // }
实战 - 展示各自的使用场景
/** *类说明:共5个初始化子线程,6个闭锁扣除点,扣除完毕后,主线程和业务线程才能继续执行 */ public class UseCountDownLatch { static CountDownLatch latch = new CountDownLatch(6); /*初始化线程*/ private static class InitThread implements Runnable{ public void run() { System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work......"); latch.countDown(); for(int i =0;i<2;i++) { System.out.println("Thread_"+Thread.currentThread().getId() +" ........continue do its work"); } } } /*业务线程等待latch的计数器为0完成*/ private static class BusiThread implements Runnable{ public void run() { try { latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } for(int i =0;i<3;i++) { System.out.println("BusiThread_"+Thread.currentThread().getId() +" do business-----"); } } } public static void main(String[] args) throws InterruptedException { new Thread(new Runnable() { public void run() { SleepTools.ms(1); System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work step 1st......"); latch.countDown(); System.out.println("begin step 2nd......."); SleepTools.ms(1); System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work step 2nd......"); latch.countDown(); } }).start(); new Thread(new BusiThread()).start(); for(int i=0;i<=3;i++){ Thread thread = new Thread(new InitThread()); thread.start(); } latch.await(); System.out.println("Main do ites work........"); } }
/** *类说明:共4个子线程,他们全部完成工作后,交出自己结果, *再被统一释放去做自己的事情,而交出的结果被另外的线程拿来拼接字符串 */ class UseCyclicBarrier { private static CyclicBarrier barrier = new CyclicBarrier(4,new CollectThread()); //存放子线程工作结果的容器 private static ConcurrentHashMapresultMap = new ConcurrentHashMap (); public static void main(String[] args) { for(int i=0;i<4;i++){ Thread thread = new Thread(new SubThread()); thread.start(); } } /*汇总的任务*/ private static class CollectThread implements Runnable{ @Override public void run() { StringBuilder result = new StringBuilder(); for(Map.Entry workResult:resultMap.entrySet()){ result.append("["+workResult.getValue()+"]"); } System.out.println(" the result = "+ result); System.out.println("do other business........"); } } /*相互等待的子线程*/ private static class SubThread implements Runnable{ @Override public void run() { long id = Thread.currentThread().getId(); resultMap.put(Thread.currentThread().getId()+"",id); try { Thread.sleep(1000+id); System.out.println("Thread_"+id+" ....do something "); barrier.await(); Thread.sleep(1000+id); System.out.println("Thread_"+id+" ....do its business "); barrier.await(); } catch (Exception e) { e.printStackTrace(); } } } }
两者总结
1. Cyclicbarrier结果汇总的Runable线程可以重复被执行,通过多次触发await()方法,countdownlatch可以调用await()方法多次;cyclicbarrier若没有结果汇总,则调用一次await()就够了;
2. New cyclicbarrier(threadCount)的线程数必须与实际的用户线程数一致;
3. 协调线程同时运行:countDownLatch协调工作线程执行,是由外面线程协调;cyclicbarrier是由工作线程之间相互协调运行;
4. 从构造函数上看出:countDownlatch控制运行的计数器数量和线程数没有关系;cyclicbarrier构造中传入的线程数等于实际执行线程数;
5. countDownLatch在不能基于执行子线程的运行结果做处理,而cyclicbarrier可以;
6. 就使用场景而言,countdownlatch 更适用于框架加载前的一系列初始化工作等场景; cyclicbarrier更适用于需要多个用户线程执行后,将运行结果汇总再计算等典型场景;
以上就是关于java中CountDownLatch和CyclicBarrier有什么区别的内容,如果你们有学习到知识或者技能,可以把它分享出去让更多的人看到。
分享题目:java中CountDownLatch和CyclicBarrier有什么区别
当前地址:http://pcwzsj.com/article/iphjgo.html