tensorflow模型保存、加载之变量重命名实例-创新互联
话不多说,干就完了。
你所需要的网站建设服务,我们均能行业靠前的水平为你提供.标准是产品质量的保证,主要从事成都网站设计、网站制作、外贸营销网站建设、企业网站建设、成都手机网站制作、网页设计、品牌网站设计、网页制作、做网站、建网站。创新互联拥有实力坚强的技术研发团队及素养的视觉设计专才。变量重命名的用处?
简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B
使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂。
实现方法:
1)、模型保存
import os import tensorflow as tf weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2], mean=0.0, stddev=0.1), dtype=tf.float32, name="weights") biases = tf.Variable(initial_value=tf.zeros(shape=[2]), dtype=tf.float32, name="biases") weights_2 = tf.Variable(initial_value=weights.initialized_value(), dtype=tf.float32, name="weights_2") # saver checkpoint if os.path.exists("checkpoints") is False: os.makedirs("checkpoints") saver = tf.train.Saver() with tf.Session() as sess: init_op = [tf.global_variables_initializer()] sess.run(init_op) saver.save(sess=sess, save_path="checkpoints/variable.ckpt")
本文题目:tensorflow模型保存、加载之变量重命名实例-创新互联
网页路径:http://pcwzsj.com/article/ipdph.html