python怎么实现计算两组数据P值

本篇文章给大家分享的是有关python怎么实现计算两组数据P值,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

成都创新互联专注于企业全网整合营销推广、网站重做改版、阳城网站定制设计、自适应品牌网站建设、H5技术商城网站建设、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为阳城等各大城市提供网站开发制作服务。

我们在做A/B试验评估的时候需要借助p_value,这篇文章记录如何利用python计算两组数据的显著性。

一、代码

# TTest.py
# -*- coding: utf-8 -*-
'''
# Created on 2020-05-20 20:36
# TTest.py
# @author: huiwenhua
'''

## Import the packages
import numpy as np
from scipy import stats

def get_p_value(arrA, arrB):

  a = np.array(arrA)
  b = np.array(arrB)

  t, p = stats.ttest_ind(a,b)

  return p

if __name__ == "__main__":
  get_p_value([1, 2, 3, 5, ], [6, 7, 8, 9, 10])

二、T检验:两样本T检验

两样本t检验是比较两个样本所代表的两个总体均值是否存在显著差异。除了要求样本来自正态分布,还要求两个样本的总体方差相等也就是“方差齐性”。

检验原假设:样本均值无差异(μ=μ0)

Python命令stats.ttest_ind(data1,data2)

当不确定两总体方差是否相等时,应先利用levene检验检验两总体是否具有方差齐性stats.levene(data1,data2)如果返回结果的p值远大于0.05,那么我们认为两总体具有方差齐性。如果两总体不具有方差齐性,需要加上参数equal_val并设定为False,如下。

stats.ttest_ind(data1,data2,equal_var=False) // TTest中默认是具有方差齐性

三、结果解释

当p值小于某个显著性水平α(比如0.05)时,则认为样本均值存在显著差异,具体的分析要看所选择的是双边假设还是单边假设(又分小于和大于)注意stats.ttest_ind进行双侧检验。

当t值大于0,则有((1-p)* 100)%的把握认为认为第一组数据好与第二组数据。例如p=0.05,那么我们有95%的把握认为第一组数据好于第二组数据。

以上就是python怎么实现计算两组数据P值,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


新闻标题:python怎么实现计算两组数据P值
标题URL:http://pcwzsj.com/article/ihgoji.html