Paxos算法的通俗理解-创新互联
Paxo成都网络公司-成都网站建设公司成都创新互联10余年经验成就非凡,专业从事网站设计、做网站,成都网页设计,成都网页制作,软文营销,一元广告等。10余年来已成功提供全面的成都网站建设方案,打造行业特色的成都网站建设案例,建站热线:18982081108,我们期待您的来电!s算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。
Paxos要解决的问题,是分布式系统中的一致性问题。那么到底什么是“分布式系统中的一致性问题”呢?在分布式系统中,为了保证数据的高可用,通常,我们会将数据保留多个
副本(replica),这些副本会放置在不同的物理的机器上。副本要保持一致,那么,所有副本的更新序列就要保持一致。因为数据的增删改查操作一般都存在多个客户端并发操作,
到底哪个客户端先做,哪个客户端后做,更新顺序要保证。如果不是分布式,那么可以通过加锁的方法,谁先申请到锁谁就先操作,但这就存在单点问题。Paxos协议主要有两种用法:
一种用法是用来实现全局的锁服务或者命名和配置服务,例如Google Chubby以及Apache ZooKeeper。另外一种用法是用它来将用户数据复制到多个数据中心,例如Google Megastore以及Google Spanner。
在Paxos算法中,主要有3种角色:
Proposer:提议者
Acceptor:决策者
Learner:最终决策学习者
实现的时候往往采用一组固定数目的Server,每个Server同时担任上述三个角色。
Paxos算法分为以下三个阶段:
1、Prepare阶段
(1)Proposer向大多数Acceptor发起Proposal(epochNo,value)的Prepare请求。
(2)Acceptor收到Prepare请求,如果epochNo比之前接收到的小,直接拒绝;如果epochNo比之前已经接收的大,就将已经接收到的epochNo大的Proposal返回到Proposer。
(3)Proposer发起的Proposal至少要收到大多数以上的Acceptor的Prepare应答后,才能进入接下来的Accept阶段,否则需要重新进行Prepare阶段向大多数Acceptor发起Prepare请求。
2、Accept阶段:
(1)Proposer收到大多数的Acceptor的Prepare应答后,看Acceptor是否已经有被接受的Proposal。如果没有已经接受的Proposal,就自己提出一个Proposal,发起Accept请求;如果已经有被接受的Proposal,就从中选出epochNo大的Proposal,发起对该Proposal的Accept请求。
(2)Acceptor收到请求后,如果该Proposal的epochNo比它最后一次应答Prepare请求的epochNo要大,那么就接受该请求;否则拒绝该请求。
3、Learn阶段:
所有Acceptor接受的Proposal要不断通知Learner,或者Learner主动去查询,一旦Learner确认Proposal被大多数的Acceptor接受,那么表示这个Proposal的Value被Chosen,Learner就可以学习这个Proposal的Value,同时自己的Sever上就不再受理Proposor的请求。
Paxos协议数据同步方式相对于基于传统1主N备的同步方式有啥区别?
一般情况下,传统数据库的高可用都是基于主备来实现,1主1备2个副本,主库crash后,通过HA工具来进行切换,提升备库为主库。在强一致场景下,复制可以开启强同步,Oracle和Mysql都是类似的复制模式。但是如果备库网络抖动,或者crash,都会导致日志同步失败,服务不可用。为此,可以引入1主N备的多副本形式,我们对比都是3副本的情况,一个是基于传统的1主2备,另一种基于paxos的1主2备。传统的1主两备,进行日志同步时,只要有一个副本接收到日志并就持久化成功,就可以返回,在一定程度上解决了网络抖动和备库crash问题。但如果主库出问题后,还是要借助于HA工具来进行切换,那么HA切换工具的可用性如何来保证又成为一个问题。基于Paxos的多副本同步其实是在1主N备的基础上引入了一致性协议,这样整个系统的可用性完全有3个副本控制,不需要额外的HA工具。而实际上,很多系统为了保证多节点HA工具获取主备信息的一致性,采用了zookeeper等第三方接口来实现分布式锁,其实本质也是基于Paxos来实现的。
本文名称:Paxos算法的通俗理解-创新互联
本文路径:http://pcwzsj.com/article/idiij.html
Paxos要解决的问题,是分布式系统中的一致性问题。那么到底什么是“分布式系统中的一致性问题”呢?在分布式系统中,为了保证数据的高可用,通常,我们会将数据保留多个
副本(replica),这些副本会放置在不同的物理的机器上。副本要保持一致,那么,所有副本的更新序列就要保持一致。因为数据的增删改查操作一般都存在多个客户端并发操作,
到底哪个客户端先做,哪个客户端后做,更新顺序要保证。如果不是分布式,那么可以通过加锁的方法,谁先申请到锁谁就先操作,但这就存在单点问题。Paxos协议主要有两种用法:
一种用法是用来实现全局的锁服务或者命名和配置服务,例如Google Chubby以及Apache ZooKeeper。另外一种用法是用它来将用户数据复制到多个数据中心,例如Google Megastore以及Google Spanner。
在Paxos算法中,主要有3种角色:
Proposer:提议者
Acceptor:决策者
Learner:最终决策学习者
实现的时候往往采用一组固定数目的Server,每个Server同时担任上述三个角色。
Paxos算法分为以下三个阶段:
1、Prepare阶段
(1)Proposer向大多数Acceptor发起Proposal(epochNo,value)的Prepare请求。
(2)Acceptor收到Prepare请求,如果epochNo比之前接收到的小,直接拒绝;如果epochNo比之前已经接收的大,就将已经接收到的epochNo大的Proposal返回到Proposer。
(3)Proposer发起的Proposal至少要收到大多数以上的Acceptor的Prepare应答后,才能进入接下来的Accept阶段,否则需要重新进行Prepare阶段向大多数Acceptor发起Prepare请求。
2、Accept阶段:
(1)Proposer收到大多数的Acceptor的Prepare应答后,看Acceptor是否已经有被接受的Proposal。如果没有已经接受的Proposal,就自己提出一个Proposal,发起Accept请求;如果已经有被接受的Proposal,就从中选出epochNo大的Proposal,发起对该Proposal的Accept请求。
(2)Acceptor收到请求后,如果该Proposal的epochNo比它最后一次应答Prepare请求的epochNo要大,那么就接受该请求;否则拒绝该请求。
3、Learn阶段:
所有Acceptor接受的Proposal要不断通知Learner,或者Learner主动去查询,一旦Learner确认Proposal被大多数的Acceptor接受,那么表示这个Proposal的Value被Chosen,Learner就可以学习这个Proposal的Value,同时自己的Sever上就不再受理Proposor的请求。
Paxos协议数据同步方式相对于基于传统1主N备的同步方式有啥区别?
一般情况下,传统数据库的高可用都是基于主备来实现,1主1备2个副本,主库crash后,通过HA工具来进行切换,提升备库为主库。在强一致场景下,复制可以开启强同步,Oracle和Mysql都是类似的复制模式。但是如果备库网络抖动,或者crash,都会导致日志同步失败,服务不可用。为此,可以引入1主N备的多副本形式,我们对比都是3副本的情况,一个是基于传统的1主2备,另一种基于paxos的1主2备。传统的1主两备,进行日志同步时,只要有一个副本接收到日志并就持久化成功,就可以返回,在一定程度上解决了网络抖动和备库crash问题。但如果主库出问题后,还是要借助于HA工具来进行切换,那么HA切换工具的可用性如何来保证又成为一个问题。基于Paxos的多副本同步其实是在1主N备的基础上引入了一致性协议,这样整个系统的可用性完全有3个副本控制,不需要额外的HA工具。而实际上,很多系统为了保证多节点HA工具获取主备信息的一致性,采用了zookeeper等第三方接口来实现分布式锁,其实本质也是基于Paxos来实现的。
本文名称:Paxos算法的通俗理解-创新互联
本文路径:http://pcwzsj.com/article/idiij.html