python检查函数参数,python 参数类型检查
python 函数参数类型
python 的函数参数类型分为4种:
创新互联建站于2013年成立,是专业互联网技术服务公司,拥有项目成都网站建设、网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元新华做网站,已为上家服务,为新华各地企业和个人服务,联系电话:028-86922220
1.位置参数:调用函数时根据函数定义的参数位置来传递参数,位置参数也可以叫做必要参数,函数调用时必须要传的参数。
当参数满足函数必要参数传参的条件,函数能够正常执行:
add(1,2) #两个参数的顺序必须一一对应,且少一个参数都不可以
当我们运行上面的程序,输出:
当函数需要两个必要参数,但是调用函数只给了一个参数时,程序会抛出异常
add(1)
当我们运行上面的程序,输出:
当函数需要两个必要参数,但是调用函数只给了三个参数时,程序会抛出异常
add(1,2,3)
当我们运行上面的程序,输出
2.关键字参数:用于函数调用,通过“键-值”形式加以指定。可以让函数更加清晰、容易使用,同时也清除了参数的顺序需求。
add(1,2) # 这种方式传参,必须按顺序传参:x对应1,y对应:2
add(y=2,x=1) #以关健字方式传入参数(可以不按顺序)
正确的调用方式
add(x=1, y=2)
add(y=2, x=1)
add(1, y=2)
以上调用方式都是允许的,能够正常执行
错误的调用方式
add(x=1, 2)
add(y=2, 1)
以上调用都会抛出SyntaxError 异常
上面例子可以看出:有位置参数时,位置参数必须在关键字参数的前面,但关键字参数之间不存在先后顺序的
3.默认参数:用于定义函数,为参数提供默认值,调用函数时可传可不传该默认参数的值,所有位置参数必须出现在默认参数前,包括函数定义和调用,有多个默认参数时,调用的时候,既可以按顺序提供默认参数,也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上
默认参数的函数定义
上面示例第一个是正确的定义位置参数的方式,第二个是错误的,因为位置参数在前,默认参数在后
def add1(x=1,y) 的定义会抛出如下异常
默认参数的函数调用
注意:定义默认参数默认参数最好不要定义为可变对象,容易掉坑
不可变对象:该对象所指向的内存中的值不能被改变,int,string,float,tuple
可变对象,该对象所指向的内存中的值可以被改变,dict,list
这里只要理解一下这个概念就行或者自行百度,后续会写相关的专题文章讲解
举一个简单示例
4.可变参数区别:定义函数时,有时候我们不确定调用的时候会多少个参数,j就可以使用可变参数
可变参数主要有两类:
*args: (positional argument) 允许任意数量的可选位置参数(参数),将被分配给一个元组, 参数名前带*,args只是约定俗成的变量名,可以替换其他名称
**kwargs:(keyword argument) 允许任意数量的可选关键字参数,,将被分配给一个字典,参数名前带**,kwargs只是约定俗成的变量名,可以替换其他名称
*args 的用法
args 是用来传递一个非键值对的可变数量的参数列表给函数
语法是使用 符号的数量可变的参数; 按照惯例,通常是使用arg这个单词,args相当于一个变量名,可以自己定义的
在上面的程序中,我们使用* args作为一个可变长度参数列表传递给add()函数。 在函数中,我们有一个循环实现传递的参数计算和输出结果。
还可以直接传递列表或者数组的方式传递参数,以数组或者列表方式传递参数名前面加(*) 号
理解* * kwargs
**kwargs 允许你将不定长度的键值对, 作为参数传递给函数,这些关键字参数在函数内部自动组装为一个dict
下篇详细讲解 *args, **kwargs 的参数传递和使用敬请关注
Python的函数和参数
parameter 是函数定义的参数形式
argument 是函数调用时传入的参数实体。
对于函数调用的传参模式,一般有两种:
此外,
也是关键字传参
python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。
通常我们见到的函数是位置和关键字混合的方式。
既可以用关键字又可以用位置调用
或
这种方式的定义只能使用关键字传参的模式
f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的
网络模块request的request方法的设计
多数的可选参数被设计成可变关键字参数
有多种方法能够为函数定义输出:
非常晦涩
如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。
例子1:
addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。
python里面,函数的默认参数被存在__default__属性中,这是一个元组类型
例子2:
在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。
如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。
例子1中,连续调用addItem('world') 的结果会是
而不是期望的
python怎样查询函数参数可以取哪些值
由于Python语言的动态类型特性,在集成开发环境或编辑工具编码时,给予的代码提示及自动完成功能不象静态语言工具(比如使用VisualStudio开发C#)那样充分。
实现开发过程中,我们借助于相关插件或使用Python内置函数"help()”来查看某个函数的参数说明,以查看内置函数sorted()为例:
help(sorted)Help on built-in function sorted in module builtins: sorted(iterable, key=None, reverse=False) Return a new list containing all items from the iterable in ascending order. A custom key function can be supplied to customise the sort order, and the reverse flag can be set to request the result in descending order.
python怎么查看函数参数?
在开发中我们可以借助于相关插件或使用Python内置函数"help()”来查看某个函数的参数说明,以查看内置函数sorted()为例:
函数参数包括:必选参数、默认参数、可选参数、关键字参数。
1、默认参数:放在必选参数之后,计算x平方的函数:
这样的话每次计算不同幂函数都要重写函数,非常麻烦,可使用以下代码计算:
默认参数最大好处就是降低调用函数的难度。
2、可变参数:就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个,在参数前面加上*就是可变参数。在函数内部,参数numbers接收得到的是一个tuple,调用该函数时,可以传入任意个参数,包括0个参数:
也可以类似可变参数,先组装一个dict,然后,把该dict转换为关键字参数传进去:
Python的函数参数总结
import math
a = abs
print(a(-1))
n1 = 255
print(str(hex(n1)))
def my_abs(x):
# 增加了参数的检查
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x = 0:
return x
else:
return -x
print(my_abs(-3))
def nop():
pass
if n1 = 255:
pass
def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
x, y = move(100, 100, 60, math.pi / 6)
print(x, y)
tup = move(100, 100, 60, math.pi / 6)
print(tup)
print(isinstance(tup, tuple))
def quadratic(a, b, c):
k = b * b - 4 * a * c
# print(k)
# print(math.sqrt(k))
if k 0:
print('This is no result!')
return None
elif k == 0:
x1 = -(b / 2 * a)
x2 = x1
return x1, x2
else:
x1 = (-b + math.sqrt(k)) / (2 * a)
x2 = (-b - math.sqrt(k)) / (2 * a)
return x1, x2
print(quadratic(2, 3, 1))
def power(x, n=2):
s = 1
while n 0:
n = n - 1
s = s * x
return s
print(power(2))
print(power(2, 3))
def enroll(name, gender, age=8, city='BeiJing'):
print('name:', name)
print('gender:', gender)
print('age:', age)
print('city:', city)
enroll('elder', 'F')
enroll('android', 'B', 9)
enroll('pythone', '6', city='AnShan')
def add_end(L=[]):
L.append('end')
return L
print(add_end())
print(add_end())
print(add_end())
def add_end_none(L=None):
if L is None:
L = []
L.append('END')
return L
print(add_end_none())
print(add_end_none())
print(add_end_none())
def calc(*nums):
sum = 0
for n in nums:
sum = sum + n * n
return sum
print(calc(1, 2, 3))
print(calc())
l = [1, 2, 3, 4]
print(calc(*l))
def foo(x, y):
print('x is %s' % x)
print('y is %s' % y)
foo(1, 2)
foo(y=1, x=2)
def person(name, age, **kv):
print('name:', name, 'age:', age, 'other:', kv)
person('Elder', '8')
person('Android', '9', city='BeiJing', Edu='人民大学')
extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, **extra)
def person2(name, age, *, city, job):
print(name, age, city, job)
person2('Pthon', 8, city='BeiJing', job='Android Engineer')
def person3(name, age, *other, city='BeiJing', job='Android Engineer'):
print(name, age, other, city, job)
person3('Php', 18, 'test', 1, 2, 3)
person3('Php2', 28, 'test', 1, 2, 3, city='ShangHai', job='Pyhton Engineer')
def test2(a, b, c=0, *args, key=None, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'key=', key, 'kw =', kw)
test2(1, 2, 3, 'a', 'b', 'c', key='key', other='extra')
args = (1, 2, 3, 4)
kw = {'d': 99, 'x': '#'}
test2(*args, **kw)
文章题目:python检查函数参数,python 参数类型检查
本文URL:http://pcwzsj.com/article/hsssic.html