python转置函数 python中转置函数

python中怎样让数据列转置

需求:

成都创新互联专注于企业全网营销推广、网站重做改版、望谟网站定制设计、自适应品牌网站建设、HTML5电子商务商城网站建设、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为望谟等各大城市提供网站开发制作服务。

你需要转置一个二维数组,将行列互换.

讨论:

你需要确保该数组的行列数都是相同的.比如:

arr = [[1, 2, 3], [4, 5, 6], [7,8, 9], [10, 11, 12]]

列表递推式提供了一个简便的矩阵转置的方法:

print [[r[col] for r in arr] for col in range(len(arr[0]))]

[[1, 4, 7, 10], [2, 5, 8, 11],[3, 6, 9, 12]]

另一个更快和高级一些的方法,可以使用zip函数:

print map(list,

zip(*arr))

本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦.

有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别.

Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速.

在列表递推式版本中,内层递推式表示选则什么(行),外层递推式表示选择者(列).这个过程完成后就实现了转置.

在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为list,

所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表).

import itertools

print map(list,

itertools.izip(*arr))

但是,在特定的情况下,上面的方法对效率的微弱提升不能弥补对复杂度的增加.

关于*args和**kwds语法:

*args(实际上,*号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定,并保留所有的位置信息,

而不是具体的变量.当你使用这个方法传递参数时,变量可以是任意的可迭代对象(其实可以是任何表达式,只要返回值是迭代器).

**kwds语法在Python中用于接收命名参数.当你用这个方式传递参数时,Python将变量和一个dict绑定,保留所有命名参数,而不是具体的变量值.当你传递参数时,变量必须是dict类型(或者是返回值为dict类型的表达式).

如果你要转置很大的数组,使用Numeric Python或其它第三方包,它们定义了很多方法,足够让你头晕的.

相关说明:

zip(...)

zip(seq1 [,

seq2 [...]]) - [(seq1[0], seq2[0] ...),

(...)]

Return a

list of tuples, where each tuple contains the i-th element

from each of

the argument sequences. The returned list is truncated

in length to

the length of the shortest argument sequence.

python transpose

transpose ,可以对矩阵的维度进行转换,下面看一个例子:

在这里做一个简单的假设:这个操作是把每一个维度都当作一个索引,对应于,

[123]--000

[456]--010 ------ 所以我们对变换首先对一个维度进行固定,对另外两个

[789]--101 维度进行操作

[101112]--111

[[[ 1 4]

[ 2 5]

[ 3 6]]

这说明假设错误。

[[ 7 10]

[ 8 11]

[ 9 12]]]

这说明这个炒作本质是对矩阵进行转置。转置的含义就是沿着数据中心,对数据进行对换。

参考变换方式:

python transpose函数怎么用

比如,将A1:E1转置到A3:A7

首先选定A3:A7然后输入

=TRANSPOSE($A$1:$E$1)

最后按【组合键】确认。

Python实现矩阵转置的方法分析

Python实现矩阵转置的方法分析

本文实例讲述了Python实现矩阵转置的方法。分享给大家供大家参考,具体如下:

前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加。例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等。

其实不动脑筋的话,用个二重循环很容易写出来:

def trans(m):

a = [[] for i in m[0]]

for i in m:

for j in range(len(i)):

a[j].append(i[j])

return a

m = [[1, 2], [3, 4], [5, 6]] # 想象第一个列表是原始的,后面的是往里添加的

print trans(m) # result:[[1, 3, 5], [ 2, 4, 6]]

然而不管怎么看这种代码都很丑。

仔细看了一下m这种结构。等等,这不是字典的iteritems()的结果么?如果dict(m),那么结果——不就是keys()和values()么?

于是利用字典转换一下:

def trans(m):

d = dict(m)

return [d.keys(), d.values()]

可是再仔细想想,这里面有bug。如果添加列表的第一个元素相同,也就是转化之后dict的key相同,那肯定就不行了呀!况且,如果原始列表不是两个,而是多个,肯定不能用字典的呀!于是这种方法作罢,还是好好看看列表的形状。

然后又是一个不小心的发现:

这种转置矩阵的即时感是怎么回事?

没错,这个问题的本质就是求解转置矩阵。于是就简单了,还是用个不动脑筋的办法:

def trans(m):

for i in range(len(m)):

for j in range(i):

m[i][j], m[j][i] = m[j][i], m[i][j]

return m

m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print trans(m)

其实还是有点bug的,看起来是好用的,然而这个矩阵要求行列长度相同才行。

最后,群里某大神说:如果只是转置矩阵的话,直接zip就好了。这才想起来zip的本质就是这样的,取出列表中的对应位置的元素,组成新列表,正是这个题目要做的。

所以最终,这个题目(转置矩阵)的python解法就相当奇妙了:

def trans(m):

return zip(*d)

没错,就这么简单。python的魅力。

python中transpose是什么意思

我先来一个举例:

arr = np.arange(16).reshape((2, 2, 4))

arr的array是这样的

array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7]],

[[ 8, 9, 10, 11],

[12, 13, 14, 15]]])

我们对arr进行transpose转置,arr2 = arr.transpose((1,0,2)),结果是这样:

array([[[ 0, 1, 2, 3],

[ 8, 9, 10, 11]],

[[ 4, 5, 6, 7],

[12, 13, 14, 15]]])

这是怎么来的呢。

arr.transpose((1,0,2))的1,0,2三个数分别代表shape()的三个数的顺序,初始的shape是(2,2,4),也就是2维的2 x 4矩阵,索引分别是shape的[0],[1],[2],arr.transpose((1,0,2))之后,我们的索引就变成了shape[1][0][2],对应shape值是shape(2,2,4),所以矩阵形状不变。

与此同时,我们矩阵的索引也发生了类似变化,如arr中的4,索引是arr[0,1,0],arr中的5是arr[0,1,1],变成arr2后,4的位置应该是在[1,0,0],5的位置变成[1,0,1],同理8的索引从[1,0,0]变成[0,1,0]。


本文题目:python转置函数 python中转置函数
浏览路径:http://pcwzsj.com/article/hipdso.html