python多函数拟合 python 函数拟合

Python 怎么用曲线拟合数据

Python中利用guiqwt进行曲线数据拟合。

创新互联是创新、创意、研发型一体的综合型网站建设公司,自成立以来公司不断探索创新,始终坚持为客户提供满意周到的服务,在本地打下了良好的口碑,在过去的十余年时间我们累计服务了上千家以及全国政企客户,如成都加固等企业单位,完善的项目管理流程,严格把控项目进度与质量监控加上过硬的技术实力获得客户的一致表扬。

示例程序:

图形界面如下:

如何用python拟合对数函数

scipy的optimize工具箱中有拟合函数可以使用

或者用sm的OSL进行拟合

具体搜一下教程

多项式拟合平方误差怎么求

线性模型(二)之多项式拟合

1. 多项式拟合问题

  多项式拟合(polynominal curve fitting)是一种线性模型,模型和拟合参数的关系是线性的。多项式拟合的输入是一维的,即x=xx=x,这是多项式拟合和线性回归问题的主要区别之一。

  多项式拟合的目标是构造输入xx的MM阶多项式函数,使得该多项式能够近似表示输入xx和输出yy的关系,虽然实际上xx和yy的关系并不一定是多项式,但使用足够多的阶数,总是可以逼近表示输入xx和输出yy的关系的。

  多项式拟合问题的输入可以表示如下:

D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R

D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R

  目标输出是得到一个多项式函数:

f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b

f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b

其中MM表示最高阶数为MM。

  可见在线性拟合的模型中,共包括了(M+1)(M+1)个参数,而该模型虽然不是输入xx的线性函数,但却是(M+1)(M+1)个拟合参数的线性函数,所以称多项式拟合为线性模型。对于多项式拟合问题,其实就是要确定这(M+1)(M+1)个参数,这里先假设阶数MM是固定的(MM是一个超参数,可以用验证集来确定MM最优的值,详细的关于MM值确定的问题,后面再讨论),重点就在于如何求出这(M+1)(M+1)个参数的值。

2.优化目标

  多项式拟合是利用多项式函数逼近输入xx和输出yy的函数关系,通过什么指标来衡量某个多项式函数的逼近程度呢?(其实这就是误差/损失函数)。拟合/回归问题常用的评价指标是均方误差(在机器学习中的模型评估与度量博客中,我进行了介绍)。多项式拟合问题也同样采用该评价指标,以均方误差作为误差/损失函数,误差函数越小,模型越好。

E(w,b)=1N∑i=1N[f(xi)−yi]2

E(w,b)=1N∑i=1N[f(xi)−yi]2

  系数1N1N是一常数,对优化结果无影响,可以去除,即将均方误差替换为平方误差:

E(w,b)=∑i=1N[f(xi)−yi]2

E(w,b)=∑i=1N[f(xi)−yi]2

   到这里,就成功把多项式拟合问题变成了最优化问题,优化问题可表示为:

argminw,bE(w,b)

arg⁡minw,b⁡E(w,b)

即需要求得参数{w1,...,wM,b}{w1,...,wM,b}的值,使得E(w,b)E(w,b)最小化。那么如何对该最优化问题求解呢?

3. 优化问题求解

3.1 求偏导,联立方程求解

   直观的想法是,直接对所有参数求偏导,令偏导为0,再联立这M+1M+1个方程求解(因为共有M+1M+1个参数,故求偏导后也是得到M+1M+1个方程)。

E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]2

E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]2

利用E(w,b)E(w,b)对各个参数求偏导,如下:

∂E(w,b)∂wj∂E(w,b)∂b=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]xji=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]

∂E(w,b)∂wj=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]xij∂E(w,b)∂b=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]

求导之后,将各个点(xi,yi)(xi,yi)的值带入偏导公式,联立方程求解即可。

  针对该解法,可以举个例子详细说明,比如有两个点(2,3),(5,8)(2,3),(5,8),需要利用二阶多项式f(x)=w1x+w2x2+bf(x)=w1x+w2x2+b拟合。求解过程如下:

该二阶多项式对参数求偏导得到

∂E(w,b)∂wj∂E(w,b)∂b=2∑i=12[(w1x1i+w2x2i+b)−yi]xji=[(w1x1+w2x21+b)−y1]xj1+[(w1x2+w2x22+b)−y2]xj2=2∑i=12[(w1x1i+w2x2i+b)−yi]=[(w1x1+w2x21+b)−y1]+[(w1x2+w2x22+b)−y2]

∂E(w,b)∂wj=2∑i=12[(w1xi1+w2xi2+b)−yi]xij=[(w1x1+w2x12+b)−y1]x1j+[(w1x2+w2x22+b)−y2]x2j∂E(w,b)∂b=2∑i=12[(w1xi1+w2xi2+b)−yi]=[(w1x1+w2x12+b)−y1]+[(w1x2+w2x22+b)−y2]

将点(2,3),(5,8)(2,3),(5,8)带入方程,可以得到3个方程,

2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212

2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212

联立这三个方程求解,发现有无穷多的解,只能得到3w1+21w2=53w1+21w2=5,这三个方程是线性相关的,故没有唯一解。

  该方法通过求偏导,再联立方程求解,比较复杂,看着也很不美观。那么有没有更加方便的方法呢?

3.2 最小二乘法

   其实求解该最优化问题(平方和的最小值)一般会采用最小二乘法(其实最小二乘法和求偏导再联立方程求解的方法无本质区别,求偏导也是最小二乘法,只是这里介绍最小二乘的矩阵形式而已)。最小二乘法(least squares),从英文名非常容易想到,该方法就是求解平方和的最小值的方法。

  可以将误差函数以矩阵的表示(NN个点,最高MM阶)为:

∥Xw−y∥2

‖Xw−y‖2

其中,把偏置bb融合到了参数ww中,

w={b,w1,w2,...,wM}

w={b,w1,w2,...,wM}

XX则表示输入矩阵,

⎡⎣⎢⎢⎢⎢11...1x1x2...xNx21x22...x2N............xM1xM2...xMN⎤⎦⎥⎥⎥⎥

[1x1x12...x1M1x2x22...x2M...............1xNxN2...xNM]

yy则表示标注向量,

y={y1,y2,...,yN}T

y={y1,y2,...,yN}T

因此,最优化问题可以重新表示为

minw∥Xw−y∥2

minw‖Xw−y‖2

对其求导,

∂∥Xw−y∥2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w

∂‖Xw−y‖2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w

在继续对其求导之前,需要先补充一些矩阵求导的先验知识(常见的一些矩阵求导公式可以参见转载的博客),如下:

∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx

∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx

根据上面的矩阵求导规则,继续进行损失函数的求导

∂∥Xw−y∥2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy

∂‖Xw−y‖2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy

其中XTXw=(XTX)TwXTXw=(XTX)Tw.令求导结果等于0,即可以求导问题的最小值。

2XTXw−2XTy=0w=(XTX)−1XTy

2XTXw−2XTy=0w=(XTX)−1XTy

  再利用最小二乘法的矩阵形式对前面的例子进行求解,用二阶多项式拟合即两个点(2,3),(5,8)(2,3),(5,8)。

表示输入矩阵 XX和标签向量yy

X=[1125425]y=[38]T

X=[1241525]y=[38]T

计算XTXXTX

XTX=⎡⎣⎢272972913329133641⎤⎦⎥

XTX=[272972913329133641]

矩阵求逆,再做矩阵乘法运算

但 XTXXTX不可逆,故无唯一解。

  关于矩阵的逆是否存在,可以通过判断矩阵的行列式是否为0(det(A)=?0det(A)=?0 来判断,也可以通过初等行变换,观察矩阵的行向量是否线性相关,在这个例子下,矩阵不可逆,故有无穷多解。但如果新增一个点(4,7)(4,7),则就可以解了。

  其实这和数据集的点数和选择的阶数有关,如果点数小于阶数则会出现无穷解的情况,如果点数等于阶数,那么刚好有解可以完全拟合所有数据点,如果点数大于阶数,则会求的近似解。

  那么对于点数小于阶数的情况,如何求解?在python的多项式拟合函数中是可以拟合的,而且效果不错,具体算法不是很了解,可以想办法参考python的ployfit()函数的实现。

4. 拟合阶数的选择

   在前面的推导中,多项式的阶数被固定了,那么实际场景下应该如何选择合适的阶数MM呢?

一般会选择阶数MM小于点数NN

把训练数据分为训练集合验证集,在训练集上,同时用不同的MM值训练多个模型,然后选择在验证集误差最小的阶数script type="math/tex" id="MathJax-Element-5573"M/script

Python最小二乘法拟合与作图

在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:

这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。

此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:

Python的使用中需要导入相应的模块,此处首先用 import 语句

分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。

接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:

其参数有:

进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:

紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:

返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。

leastsq() 的参数具体有:

输出选项有:

最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:

pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。

pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。

pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。

pylab.show() 函数用于显示图像。

最终结果如下图所示:

用Python作科学计算

numpy.loadtxt

scipy.optimize.leastsq

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:

python拟合指数函数初始值如何设定

求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。

一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。


标题名称:python多函数拟合 python 函数拟合
当前地址:http://pcwzsj.com/article/hhpgdi.html