php大数据排序,php常见的排序算法

php 根据数值大小排列 怎么实现啊?

可以将多个数值放到一个数组里,用sork()函数对其进行排序,然后再用foreach输出。

创新互联,专注为中小企业提供官网建设、营销型网站制作、响应式网站建设、展示型网站设计、成都网站建设等服务,帮助中小企业通过网站体现价值、有效益。帮助企业快速建站、解决网站建设与网站营销推广问题。

不懂的话可以M我

php中对一组数字从大到小排序方法

可以把数字放到数组中,然后使用sort

将数组排序:例如

$arr=array(3,1,20,10,99,5);

asort($arr);

print_r($arr)

结果为:

Array

(

[0]

=

1

[1]

=

3

[2]

=

5

[3]

=

10

[4]

=

20

[5]

=

99

)

然后再做你想要的操作

PHP实现常见的排序算法

注:为方便描述,下面的排序全为正序(从小到大排序)

假设有一个数组[a,b,c,d]

冒泡排序依次比较相邻的两个元素,如果前面的元素大于后面的元素,则两元素交换位置;否则,位置不变。具体步骤:

1,比较a,b这两个元素,如果ab,则交换位置,数组变为:[b,a,c,d]

2,比较a,c这两个元素,如果ac,则位置不变,数组变为:[b,a,c,d]

3,比较c,d这两个元素,如果cd,则交换位置,数组变为:[b,a,d,c]

完成第一轮比较后,可以发现最大的数c已经排(冒)在最后面了,接着再进行第二轮比较,但第二轮比较不必比较最后一个元素了,因为最后一个元素已经是最大的了。

第二轮比较结束后,第二大的数也会冒到倒数第二的位置。

依次类推,再进行第三轮,,,

就这样最大的数一直往后排(冒),最后完成排序。所以我们称这种排序算法为冒泡排序。

选择排序是一种直观的算法,每一轮会选出列中最小的值,把最小值排到前面。具体步骤如下:

插入排序步骤大致如下:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。

步骤:

从数列中挑出一个元素,称为 “基准”(pivot),

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

如何利用php数组对百万数据进行排重

如果你已经使用了一段时间PHP的话,那么,你应该已经对它的数组比较熟悉了——这种数据结构允许你在单个变量中存储多个值,并且可以把它们作为一个集合进行操作。

经常,开发人员发现在PHP中使用这种数据结构对值或者数组元素进行排序非常有用。PHP提供了一些适合多种数组的排序函数,这些函数允许你在数组内部对元素进行排列,也允许用很多不同的方法对它们进行重新排序。在这篇文章中我们将讨论该排序中最重要的几个函数。

简单排序

首先,让我们来看看最简单的情况:将一个数组元素从低到高进行简单排序,这个函数既可以按数字大小排列也可以按字母顺序排列。PHP的sort()函数实现了这个功能,如Listing A所示:

Listing A

?php

 $data = array(5,8,1,7,2);

 sort($data);

 print_r($data);

 ?

输出结果如下所示:

Array ([0] = 1

[1] = 2

[2] = 5

[3] = 7

[4] = 8

)

用php定义一个数组,要求把数组从大到小排序并输出

array_multisort()函数是PHP中最有用的函数之一,它有非常广泛的应用范围。另外,就如你在例子中所看到的,它能对多个不相关的数组进行排序,也可以使用其中的一个元素作为下次排序的基础,还可以对数据库结果集进行排序。

HP超级全局变量数组,百科名片:PHP超级全局变量数组(Super Global Array),又称为PHP预定义数组,是由PHP引擎内置的,不需要开发者重新定... __METHOD__存储该常量所在的类的方法的名称PHP_VERSION存储当前PHP的版本号,也可以通过PHPVERSION()函数获取。


本文名称:php大数据排序,php常见的排序算法
当前网址:http://pcwzsj.com/article/heghoc.html