python函数jump,python函数局部变量和全局变量同名
python 算法之青蛙跳出井口
一只青蛙在井底,每天白天向上爬3米,夜晚又滑下去2米,
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:主机域名、虚拟空间、营销软件、网站建设、五莲网站维护、网站推广。
井深10米青蛙要爬多少天才能爬到井口?
i表示天数
a青蛙高度
流程图
a=0
for i in range(1,20):
a+=3
if a=10:
break
a-=2
a=0
i=0
while True:
i+=1
a+=3
if a=10:
break
a-=2
def jump(a, i):
a+=3
if a=10:
print(i)
return
a-=2
i+=1
jump(a,i)
a=0
i=1
jump(a, i)
python 列表推导 为什么快
首先肯定 map 和列表推导效率确实会比循环的高,
先说列表推导,下边是我在 ipython 里的测试结果(测试环境 Python 2.7.10):
long_list = range(1000)
a = []
%timeit for i in long_list: a.append(i+1)
10000 loops, best of 3: 100 µs per loop
%timeit [i+1 for i in long_list]
10000 loops, best of 3: 43.3 µs per loop
可以看出列表推导还是要快过 for 循环的。
那为什么列表推导会快呢?我们直接调用 python 的 dis 模块去看看他的字节码:
这个是列表推导那一行代码的字节码:
0 BUILD_LIST 0
3 LOAD_GLOBAL 0 (long_list)
6 GET_ITER
7 FOR_ITER 16 (to 26)
10 STORE_FAST 0 (i)
13 LOAD_FAST 0 (i)
16 LOAD_CONST 1 (1)
19 BINARY_ADD
20 LIST_APPEND 2
23 JUMP_ABSOLUTE 7
...
这个是 for 循环那一行的字节码:
6 SETUP_LOOP 31 (to 40)
9 LOAD_GLOBAL 0 (long_list)
12 GET_ITER
13 FOR_ITER 23 (to 39)
16 STORE_FAST 1 (i)
19 LOAD_FAST 0 (a)
22 LOAD_ATTR 1 (append)
25 LOAD_FAST 1 (i)
28 LOAD_CONST 1 (1)
31 BINARY_ADD
32 CALL_FUNCTION 1
35 POP_TOP
36 JUMP_ABSOLUTE 13
...
对比一下不难发现其实列表推导和 for 循环的过程几乎是一样的,除了如何append。所以你要说他是语法糖也不是不行……
在
列表推导中直接使用了‘LIST_APPEND’这个字节码来实现 append 功能,效率相当的高。而在 for 循环中每次循环都要先载入
append 这个属性然后再 ‘CALL_FUNCTION’一下。这样势必就会慢了很多。为了验证我们的猜想,我们把 append
这个函数存到局部变量里去:
a = []
invoke = a.append
%timeit for i in long_list: invoke(i+1)
10000 loops, best of 3: 67.2 µs per loop
发现没有比前一个版本的 for 循环快了接近40%,剩下的多出来20多 µs 的开销自然就是‘CALL_FUNCTION’的开销咯 ╮(╯_╰)╭。
相信到这里你应该明白了为什么列表推导要比 for 循环快吧,秘诀就在这个‘LIST_APPEND’这个字节码上,相当于你直接调用了 C 语言版本的函数(不严谨)而且越过了一些中间步骤。
接下来简单说说 map 的事情,直接使用 map 一般来说是要比循环快的,但有的时候情况会比较诡异,例如:
%timeit for i in long_list: a.append(i+1)
10000 loops, best of 3: 100 µs per loop
%timeit map(lambda x: x+1, long_list)
10000 loops, best of 3: 109 µs per loop
别急,我们把 map 的写法改成这样:
int_object = 1
%timeit map(int_object.__add__, long_list)
10000 loops, best of 3: 41.6 µs per loop
于是神奇的事情出现了!基本上和列表推导一样快!(⊙o⊙)
这个主要是因为 lambda
表达式生成的函数是 Python 的,而直接用+运算符或者__add__方法调用的是 C 版本的。你要是把列表推导里边的+换成 lambda
表达式两者的速度差不多,map 一般来说还要快上一点点。本质上来说 map 调用了底层的 C 函数所以速度自然是快的。粗暴的总结一下就是不用
lambda 的时候 map 要快一些
python递归如何达到某一条件停止并返回当前值
Python break语句,就像在C语言中,打破了最小封闭for或while循环。
break语句用来终止循环语句,即循环条件没有False条件或者序列还没被完全递归完,也会停止执行循环语句。
break语句用在while和for循环中。
如果您使用嵌套循环,break语句将停止执行最深层的循环,并开始执行下一行代码。
网站标题:python函数jump,python函数局部变量和全局变量同名
网站地址:http://pcwzsj.com/article/hcgspg.html