php实时大数据,php实时输出
中软卓越php大数据课程学哪些知识,谁说一下。
首先是向了解PHP呢还是大数据呢?不过想都拿下的话,不是一朝一夕的,步子迈得太大,不好,技在于精而后于多。
霍邱网站建设公司创新互联建站,霍邱网站设计制作,有大型网站制作公司丰富经验。已为霍邱超过千家提供企业网站建设服务。企业网站搭建\外贸网站建设要多少钱,请找那个售后服务好的霍邱做网站的公司定做!
先说PHP:最基本其实就是web前端基础;第二的话包括PHP语言基础、Ajax、数据库强化、运行环境及配置、面向对象OOADUML等;第三就是主流框架的掌握了,Smarty、PDO等
再说大数据:
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
PHP如何解决网站的大数据大流量与高并发
使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。
2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。
3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。
简单说些常用技术,负载均衡,限流,加速器等
PHP-大数据量怎么处理优化
大数据的话可以进行以下操作:
减少对数据库的读取,也就是减少调用数据库,
进行数据缓存,
利用数据库的自身优化技术,如索引等
精确查询条件,有利于提高查找速度
PHP的算法可以实现大数据分析吗
1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m 应该=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
2.Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。 ()
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
3.bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
4.堆
适用范围:海量数据前n大,并且n比较小,堆可以放入内存
基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。
扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。
问题实例:
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。
5.双层桶划分 ----其实本质上就是【分而治之】的思想,重在“分”的技巧上!
适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。
扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。
2).5亿个int找它们的中位数。
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。
实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
6.数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
扩展:
问题实例:
7.倒排索引(Inverted index)
适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。
正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。
扩展:
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。
8.外排序
适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树
扩展:
问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。
9.trie树
适用范围:数据量大,重复多,但是数据种类小可以放入内存
基本原理及要点:实现方式,节点孩子的表示方式
扩展:压缩实现。
问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。
2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
10.分布式处理 mapreduce
适用范围:数据量大,但是数据种类小可以放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。
扩展:
问题实例:
1).The canonical example application of MapReduce is a process to count the appearances of
each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);
void reduce(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a "1" value by
the Map function, using the word as the result key. The framework puts together all the pairs
with the same key and feeds them to the same call to Reduce, thus this function just needs to
sum all of its input values to find the total appearances of that word.
2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?
经典问题分析
上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。
可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序
所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。
如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。
当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。
实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。
而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。
另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。
php采集大数据的方案
1、建议你读写数据和下载图片分开,各用不同的进程完成。
比如说,取数据用get-data.php,下载图片用get-image.php。
2、多进程的话,php可以简单的用pcntl_fork()。这样可以并发多个子进程。
但是我不建议你用fork,我建议你安装一个gearman worker。这样你要并发几个,就启几个worker,写代码简单,根本不用在代码里考虑thread啊,process等等。
3、综上,解决方案这样:
(1)安装gearman worker。
(2)写一个get-data.php,在crontab里设置它每5分钟执行一次,只负责读数据,然后把读回来的数据一条一条的扔到 gearman worker的队列里;
然后再写一个处理数据的脚本作为worker,例如叫process-data.php,这个脚本常驻内存。它作为worker从geraman 队列里读出一条一条的数据,然后跟你的数据库老数据比较,进行你的业务逻辑。如果你要10个并发,那就启动10个process-data.php好了。处理完后,如果图片地址有变动需要下载图片,就把图片地址扔到 gearman worker的另一个队列里。
(3)再写一个download-data.php,作为下载图片的worker,同样,你启动10个20个并发随便你。这个进程也常驻内存运行,从gearman worker的图片数据队列里取数据出来,下载图片
4、常驻进程的话,就是在代码里写个while(true)死循环,让它一直运行好了。如果怕内存泄露啥的,你可以每循环10万次退出一下。然后在crontab里设置,每分钟检查一下进程有没有启动,比如说这样启动3个process-data worker进程:
* * * * * flock -xn /tmp/process-data.1.lock -c '/usr/bin/php /process-data.php /dev/null 21'
* * * * * flock -xn /tmp/process-data.2.lock -c '/usr/bin/php /process-data.php /dev/null 21'
* * * * * flock -xn /tmp/process-data.3.lock -c '/usr/bin/php /process-data.php /dev/null 21'
不知道你明白了没有
大型的PHP应用,通常使用什么应用做消息队列?
一、消息队列概述\x0d\x0a消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。\x0d\x0a目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。\x0d\x0a二、消息队列应用场景\x0d\x0a以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。\x0d\x0a2.1异步处理\x0d\x0a场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。\x0d\x0a(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。(架构KKQ:466097527,欢迎加入)\x0d\x0a(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。\x0d\x0a假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。\x0d\x0a因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。\x0d\x0a小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?\x0d\x0a引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:\x0d\x0a按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。\x0d\x0a2.2应用解耦\x0d\x0a场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:\x0d\x0a传统模式的缺点:\x0d\x0a1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;\x0d\x0a2) 订单系统与库存系统耦合;\x0d\x0a如何解决以上问题呢?引入应用消息队列后的方案,如下图:\x0d\x0a订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。\x0d\x0a库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。\x0d\x0a假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。\x0d\x0a2.3流量削锋\x0d\x0a流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。\x0d\x0a应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。\x0d\x0a可以控制活动的人数;\x0d\x0a可以缓解短时间内高流量压垮应用;\x0d\x0a用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;\x0d\x0a秒杀业务根据消息队列中的请求信息,再做后续处理。\x0d\x0a2.4日志处理\x0d\x0a日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:\x0d\x0a日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;\x0d\x0aKafka消息队列,负责日志数据的接收,存储和转发;\x0d\x0a日志处理应用:订阅并消费kafka队列中的日志数据;\x0d\x0a以下是新浪kafka日志处理应用案例:\x0d\x0a(1)Kafka:接收用户日志的消息队列。\x0d\x0a(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。\x0d\x0a(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。\x0d\x0a(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。\x0d\x0a2.5消息通讯\x0d\x0a消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。\x0d\x0a点对点通讯:\x0d\x0a客户端A和客户端B使用同一队列,进行消息通讯。\x0d\x0a聊天室通讯:\x0d\x0a客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。\x0d\x0a以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。\x0d\x0a三、消息中间件示例\x0d\x0a3.1电商系统\x0d\x0a消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)\x0d\x0a(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。\x0d\x0a(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。\x0d\x0a3.2日志收集系统\x0d\x0a分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。\x0d\x0aZookeeper注册中心,提出负载均衡和地址查找服务;\x0d\x0a日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;\x0d\x0a四、JMS消息服务\x0d\x0a讲消息队列就不得不提JMS 。JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。\x0d\x0a在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。\x0d\x0a4.1消息模型\x0d\x0a在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。\x0d\x0a4.1.1 P2P模式\x0d\x0aP2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。\x0d\x0aP2P的特点\x0d\x0a每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)\x0d\x0a发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列\x0d\x0a接收者在成功接收消息之后需向队列应答成功\x0d\x0a如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)\x0d\x0a4.1.2 Pub/sub模式\x0d\x0a包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。\x0d\x0aPub/Sub的特点\x0d\x0a每个消息可以有多个消费者\x0d\x0a发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。\x0d\x0a为了消费消息,订阅者必须保持运行的状态。\x0d\x0a为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。\x0d\x0a如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。\x0d\x0a4.2消息消费\x0d\x0a在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。\x0d\x0a(1)同步\x0d\x0a订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;\x0d\x0a(2)异步\x0d\x0a订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。\x0d\x0aJNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。\x0d\x0aJNDI在JMS中起到查找和访问发送目标或消息来源的作用。(架构KKQ:466097527,欢迎加入)\x0d\x0a4.3JMS编程模型\x0d\x0a(1) ConnectionFactory\x0d\x0a创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。\x0d\x0a(2) Destination\x0d\x0aDestination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。\x0d\x0a所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。\x0d\x0a(3) Connection\x0d\x0aConnection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。\x0d\x0a(4) Session\x0d\x0aSession是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。\x0d\x0a(5) 消息的生产者\x0d\x0a消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。\x0d\x0a(6) 消息消费者\x0d\x0a消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。\x0d\x0a(7) MessageListener\x0d\x0a消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。\x0d\x0a深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。\x0d\x0a五、常用消息队列\x0d\x0a一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。\x0d\x0a5.1 ActiveMQ\x0d\x0aActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。\x0d\x0aActiveMQ特性如下:\x0d\x0a⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP\x0d\x0a⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)\x0d\x0a⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性\x0d\x0a⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上\x0d\x0a⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA\x0d\x0a⒍ 支持通过JDBC和journal提供高速的消息持久化\x0d\x0a⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点\x0d\x0a⒏ 支持Ajax\x0d\x0a⒐ 支持与Axis的整合\x0d\x0a⒑ 可以很容易得调用内嵌JMS provider,进行测试\x0d\x0a5.2 RabbitMQ\x0d\x0aRabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。\x0d\x0a几个重要概念:\x0d\x0aBroker:简单来说就是消息队列服务器实体。\x0d\x0aExchange:消息交换机,它指定消息按什么规则,路由到哪个队列。\x0d\x0aQueue:消息队列载体,每个消息都会被投入到一个或多个队列。\x0d\x0aBinding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。\x0d\x0aRouting Key:路由关键字,exchange根据这个关键字进行消息投递。\x0d\x0avhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。\x0d\x0aproducer:消息生产者,就是投递消息的程序。\x0d\x0aconsumer:消息消费者,就是接受消息的程序。\x0d\x0achannel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。\x0d\x0a消息队列的使用过程,如下:\x0d\x0a(1)客户端连接到消息队列服务器,打开一个channel。\x0d\x0a(2)客户端声明一个exchange,并设置相关属性。\x0d\x0a(3)客户端声明一个queue,并设置相关属性。\x0d\x0a(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。\x0d\x0a(5)客户端投递消息到exchange。\x0d\x0aexchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。\x0d\x0a5.3 ZeroMQ\x0d\x0a号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。\x0d\x0a引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”\x0d\x0a特点是:\x0d\x0a高性能,非持久化;\x0d\x0a跨平台:支持Linux、Windows、OS X等。\x0d\x0a多语言支持; C、C++、Java、.NET、Python等30多种开发语言。\x0d\x0a可单独部署或集成到应用中使用;\x0d\x0a可作为Socket通信库使用。\x0d\x0a与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。\x0d\x0aZeroMQ高性能设计要点:\x0d\x0a1、无锁的队列模型\x0d\x0a对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。\x0d\x0a2、批量处理的算法\x0d\x0a对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。\x0d\x0a3、多核下的线程绑定,无须CPU切换\x0d\x0a区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。\x0d\x0a5.4 Kafka\x0d\x0aKafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。\x0d\x0aKafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:\x0d\x0a通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)\x0d\x0a高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。\x0d\x0a支持通过Kafka服务器和消费机集群来分区消息。\x0d\x0a支持Hadoop并行数据加载。\x0d\x0aKafka相关概念\x0d\x0aBroker\x0d\x0aKafka集群包含一个或多个服务器,这种服务器被称为broker[5]\x0d\x0aTopic\x0d\x0a每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)\x0d\x0aPartition\x0d\x0aParition是物理上的概念,每个Topic包含一个或多个Partition.\x0d\x0aProducer\x0d\x0a负责发布消息到Kafka broker\x0d\x0aConsumer\x0d\x0a消息消费者,向Kafka broker读取消息的客户端。\x0d\x0aConsumer Group\x0d\x0a每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。\x0d\x0a一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。
网站名称:php实时大数据,php实时输出
当前链接:http://pcwzsj.com/article/hceigj.html