Hadoop部署之Hadoop(三)
一、Hadoop 介绍
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
创新互联主营无为网站建设的网络公司,主营网站建设方案,手机APP定制开发,无为h5小程序设计搭建,无为网站营销推广欢迎无为等地区企业咨询
1、HDFS 介绍
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。
HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
2、HDFS 组成
HDFS采用主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。NameNode作为主服务器,管理文件系统命名空间和客户端对文件的访问操作。DataNode管理存储的数据。HDFS支持文件形式的数据。
从内部来看,文件被分成若干个数据块,这若干个数据块存放在一组DataNode上。NameNode执行文件系统的命名空间,如打开、关闭、重命名文件或目录等,也负责数据块到具体DataNode的映射。DataNode负责处理文件系统客户端的文件读写,并在NameNode的统一调度下进行数据库的创建、删除和复制工作。NameNode是所有HDFS元数据的管理者,用户数据永远不会经过NameNode。
3、MapReduce 介绍
Hadoop MapReduce是google MapReduce 克隆版。
MapReduce是一种计算模型,用以进行大数据量的计算。其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。
4、MapReduce 架构
Hadoop MapReduce采用Master/Slave(M/S)架构,如下图所示,主要包括以下组件:Client、JobTracker、TaskTracker和Task。
JobTracker
- JobTracker叫作业跟踪器,运行到主节点(Namenode)上的一个很重要的进程,是MapReduce体系的调度器。用于处理作业(用户提交的代码)的后台程序,决定有哪些文件参与作业的处理,然后把作业切割成为一个个的小task,并把它们分配到所需要的数据所在的子节点。
- Hadoop的原则就是就近运行,数据和程序要在同一个物理节点里,数据在哪里,程序就跑去哪里运行。这个工作是JobTracker做的,监控task,还会重启失败的task(于不同的节点),每个集群只有唯一一个JobTracker,类似单点的NameNode,位于Master节点
TaskTracker
- TaskTracker叫任务跟踪器,MapReduce体系的最后一个后台进程,位于每个slave节点上,与datanode结合(代码与数据一起的原则),管理各自节点上的task(由jobtracker分配),
- 每个节点只有一个tasktracker,但一个tasktracker可以启动多个JVM,运行Map Task和Reduce Task;并与JobTracker交互,汇报任务状态,
- Map Task:解析每条数据记录,传递给用户编写的map(),并执行,将输出结果写入本地磁盘(如果为map-only作业,直接写入HDFS)。
- Reducer Task:从Map Task的执行结果中,远程读取输入数据,对数据进行排序,将数据按照分组传递给用户编写的reduce函数执行。
二、Hadoop的安装
1、下载安装
# 下载安装包
wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz
# 解压安装包
tar xf hadoop-2.7.3.tar.gz && mv hadoop-2.7.3 /usr/local/hadoop
# 创建目录
mkdir -p /home/hadoop/{name,data,log,journal}
2、配置 Hadoop 环境变量
创建文件/etc/profile.d/hadoop.sh
。
# HADOOP ENV
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
使 Hadoop 环境变量生效。
source /etc/profile.d/hadoop.sh
三、Hadoop 配置
1、配置 hadoop-env.sh
编辑文件/usr/local/hadoop/etc/hadoop/hadoop-env.sh
,修改下面字段。
export JAVA_HOME=/usr/java/default
export HADOOP_HOME=/usr/local/hadoop
2、配置 yarn-env.sh
编辑文件/usr/local/hadoop/etc/hadoop/yarn-env.sh
,修改下面字段。
export JAVA_HOME=/usr/java/default
3、配置 DN 白名单 slaves
编辑文件/usr/local/hadoop/etc/hadoop/slaves
datanode01
datanode02
datanode03
4、配置核心组件 core-site.xml
编辑文件/usr/local/hadoop/etc/hadoop/core-site.xml
,修改为如下:
fs.default.name
hdfs://cluster1:9000
hadoop.tmp.dir
/home/hadoop/data
ha.zookeeper.quorum
zk01:2181,zk02:2181,zk03:2181
dfs.permissions
false
io.file.buffer.size
131702
5、配置文件系统 hdfs-site.xml
编辑文件/usr/local/hadoop/etc/hadoop/hdfs-site.xml
,修改为如下:
dfs.namenode.name.dir
file:/home/hadoop/name
dfs.datanode.data.dir
file:/home/hadoop/data
dfs.replication
2
dfs.webhdfs.enabled
true
dfs.nameservices
cluster1
6、配置计算框架 mapred-site.xml
编辑文件/usr/local/hadoop/etc/hadoop/mapred-site.xml
,修改为如下:
mapreduce.framework.name
yarn
mapred.local.dir
/home/hadoop/data
mapreduce.admin.map.child.java.opts
-Xmx256m
mapreduce.admin.reduce.child.java.opts
-Xmx4096m
mapred.child.java.opts
-Xmx512m
mapred.task.timeout
1200000
true
dfs.hosts.exclude
slaves.exclude
mapred.hosts.exclude
slaves.exclude
7、配置计算框架 yarn-site.xml
编辑文件/usr/local/hadoop/etc/hadoop/yarn-site.xml
,修改为如下:
yarn.resourcemanager.hostname
namenode01
yarn.resourcemanager.address
${yarn.resourcemanager.hostname}:8032
yarn.resourcemanager.scheduler.address
${yarn.resourcemanager.hostname}:8030
yarn.resourcemanager.webapp.address
${yarn.resourcemanager.hostname}:8088
yarn.resourcemanager.resource-tracker.address
${yarn.resourcemanager.hostname}:8031
yarn.resourcemanager.admin.address
${yarn.resourcemanager.hostname}:8033
yarn.scheduler.maximum-allocation-mb
983040
yarn.resourcemanager.scheduler.class
yarn.resourcemanager.resource-tracker.address
${yarn.resourcemanager.hostname}:8031
yarn.resourcemanager.admin.address
${yarn.resourcemanager.hostname}:8033
yarn.scheduler.maximum-allocation-mb
8182
yarn.resourcemanager.scheduler.class
org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
yarn.log-aggregation-enable
true
yarn.resourcemanager.scheduler.class
org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
yarn.scheduler.maximum-allocation-vcores
512
yarn.scheduler.minimum-allocation-mb
2048
yarn.log-aggregation-enable
true
yarn.log-aggregation.retain-seconds
604800
yarn.nodemanager.resource.cpu-vcores
12
yarn.nodemanager.resource.memory-mb
8192
yarn.nodemanager.vmem-check-enabled
false
yarn.nodemanager.pmem-check-enabled
false
yarn.nodemanager.vmem-pmem-ratio
2.1
yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk-percentage
98.0
yarn.nodemanager.aux-services
mapreduce_shuffle
yarn.nodemanager.auxservices.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler
8、将配置文件复制到其他服务节点
cd /usr/local/hadoop/etc/hadoop
scp * datanode01:/usr/local/hadoop/etc/hadoop
scp * datanode02:/usr/local/hadoop/etc/hadoop
scp * datanode03:/usr/local/hadoop/etc/hadoop
chown -R hadoop:hadoop /usr/local/hadoop
chmod 755 /usr/local/hadoop/etc/hadoop
四、Hadoop 启动
1、格式化 HDFS(在NameNode01执行)
hdfs namenode -format
hadoop-daemon.sh start namenode
2、重启 Hadoop(在NameNode01执行)
stop-all.sh
start-all.sh
五、检查 Hadoop
1、检查JPS进程
[root@namenode01 ~]# jps
17419 NameNode
17780 ResourceManager
18152 Jps
[root@datanode01 ~]# jps
2227 DataNode
1292 QuorumPeerMain
2509 Jps
2334 NodeManager
[root@datanode02 ~]# jps
13940 QuorumPeerMain
18980 DataNode
19093 NodeManager
19743 Jps
[root@datanode03 ~]# jps
19238 DataNode
19350 NodeManager
14215 QuorumPeerMain
20014 Jps
2、HDFS 的 WEB 界面
访问 http://192.168.1.200:50070/
3、YARN 的 WEB 界面
访问 http://192.168.1.200:8088/
六、MapReduce的WordCount验证
1、上传需要处理的文件到 hdfs。
[root@namenode01 ~]# hadoop fs -put /root/anaconda-ks.cfg /anaconda-ks.cfg
2、进行 wordcount
[root@namenode01 ~]# cd /usr/local/hadoop/share/hadoop/mapreduce/
[root@namenode01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /anaconda-ks.cfg /test
18/11/17 00:04:45 INFO client.RMProxy: Connecting to ResourceManager at namenode01/192.168.1.200:8032
18/11/17 00:04:45 INFO input.FileInputFormat: Total input paths to process : 1
18/11/17 00:04:45 INFO mapreduce.JobSubmitter: number of splits:1
18/11/17 00:04:45 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1541095016765_0004
18/11/17 00:04:46 INFO impl.YarnClientImpl: Submitted application application_1541095016765_0004
18/11/17 00:04:46 INFO mapreduce.Job: The url to track the job: http://namenode01:8088/proxy/application_1541095016765_0004/
18/11/17 00:04:46 INFO mapreduce.Job: Running job: job_1541095016765_0004
18/11/17 00:04:51 INFO mapreduce.Job: Job job_1541095016765_0004 running in uber mode : false
18/11/17 00:04:51 INFO mapreduce.Job: map 0% reduce 0%
18/11/17 00:04:55 INFO mapreduce.Job: map 100% reduce 0%
18/11/17 00:04:59 INFO mapreduce.Job: map 100% reduce 100%
18/11/17 00:04:59 INFO mapreduce.Job: Job job_1541095016765_0004 completed successfully
18/11/17 00:04:59 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=1222
FILE: Number of bytes written=241621
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1023
HDFS: Number of bytes written=941
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=1758
Total time spent by all reduces in occupied slots (ms)=2125
Total time spent by all map tasks (ms)=1758
Total time spent by all reduce tasks (ms)=2125
Total vcore-milliseconds taken by all map tasks=1758
Total vcore-milliseconds taken by all reduce tasks=2125
Total megabyte-milliseconds taken by all map tasks=1800192
Total megabyte-milliseconds taken by all reduce tasks=2176000
Map-Reduce Framework
Map input records=38
Map output records=90
Map output bytes=1274
Map output materialized bytes=1222
Input split bytes=101
Combine input records=90
Combine output records=69
Reduce input groups=69
Reduce shuffle bytes=1222
Reduce input records=69
Reduce output records=69
Spilled Records=138
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=99
CPU time spent (ms)=970
Physical memory (bytes) snapshot=473649152
Virtual memory (bytes) snapshot=4921606144
Total committed heap usage (bytes)=441450496
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=922
File Output Format Counters
Bytes Written=941
3、查看结果
[root@namenode01 mapreduce]# hadoop fs -cat /test/part-r-00000
# 11
#version=DEVEL 1
$6$kRQ2y1nt/B6c6ETs$ITy0O/E9P5p0ePWlHJ7fRTqVrqGEQf7ZGi5IX2pCA7l25IdEThUNjxelq6wcD9SlSa1cGcqlJy2jjiV9/lMjg/ 1
%addon 1
%end 2
%packages 1
--all 1
--boot-drive=sda 1
--bootproto=dhcp 1
--device=enp1s0 1
--disable 1
--drives=sda 1
--enable 1
--enableshadow 1
--hostname=localhost.localdomain 1
--initlabel 1
--ipv6=auto 1
--isUtc 1
--iscrypted 1
--location=mbr 1
--onboot=off 1
--only-use=sda 1
--passalgo=sha512 1
--reserve-mb='auto' 1
--type=lvm 1
--vckeymap=cn 1
--xlayouts='cn' 1
@^minimal 1
@core 1
Agent 1
Asia/Shanghai 1
CDROM 1
Keyboard 1
Network 1
Partition 1
Root 1
Run 1
Setup 1
System 4
Use 2
auth 1
authorization 1
autopart 1
boot 1
bootloader 2
cdrom 1
clearing 1
clearpart 1
com_redhat_kdump 1
configuration 1
first 1
firstboot 1
graphical 2
ignoredisk 1
information 3
install 1
installation 1
keyboard 1
lang 1
language 1
layouts 1
media 1
network 2
on 1
password 1
rootpw 1
the 1
timezone 2
zh_CN.UTF-8 1
七、Hadoop 的使用
查看fs帮助命令: hadoop fs -help
查看HDFS磁盘空间: hadoop fs -df -h
创建目录: hadoop fs -mkdir
上传本地文件: hadoop fs -put
查看文件: hadoop fs -ls
查看文件内容: hadoop fs –cat
复制文件: hadoop fs -cp
下载HDFS文件到本地: hadoop fs -get
移动文件: hadoop fs -mv
删除文件: hadoop fs -rm -r -f
删除文件夹: hadoop fs -rm –r
网站名称:Hadoop部署之Hadoop(三)
本文来源:http://pcwzsj.com/article/gphiee.html