怎么使用Joinquant做实盘行情数据
这篇文章主要为大家展示了“怎么使用Joinquant做实盘行情数据”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“怎么使用Joinquant做实盘行情数据”这篇文章吧。
创新互联公司于2013年创立,是专业互联网技术服务公司,拥有项目网站设计制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元铁门关做网站,已为上家服务,为铁门关各地企业和个人服务,联系电话:18982081108
如下图,如果运行行情数据下载时候,是在交易日中的话比如2点半或者上午8点,如果填写的endDate是当天或者之后的日期,那么返回数据会自动填充到下午3点交易时候。此时之后的数据都是交易量为0,价格就是2点半时候价格。
所以在用作实盘数据分析时候,必须要填入endDate的分钟时间为当前时间,才可以确保不会出现控制。整体代码更新如下:
# encoding: UTF-8 from __future__ import print_function import sys import json from datetime import datetime,date,timedelta from time import time, sleep from pymongo import MongoClient, ASCENDING import pandas as pd from vnpy.trader.vtObject import VtBarData, VtTickData from vnpy.trader.app.ctaStrategy.ctaBase import (MINUTE_DB_NAME, DAILY_DB_NAME, TICK_DB_NAME) import jqdatasdk as jq # 加载配置 config = open('config.json') setting = json.load(config) mc = MongoClient() # Mongo连接 dbMinute = mc[MINUTE_DB_NAME] # 数据库 # dbDaily = mc[DAILY_DB_NAME] # dbTick = mc[TICK_DB_NAME] USERNAME = setting['Username'] PASSWORD = setting['Password'] jq.auth(USERNAME, PASSWORD) FIELDS = ['open', 'high', 'low', 'close', 'volume'] # ---------------------------------------------------------------------- def generateVtBar(row, symbol): """生成K线""" bar = VtBarData() bar.symbol = symbol bar.exchange = "SHFE" bar.vtSymbol = bar.vtSymbol = '.'.join([bar.symbol, bar.exchange]) bar.open = row['open'] bar.high = row['high'] bar.low = row['low'] bar.close = row['close'] bar.volume = row['volume'] bardatetime = row.name bar.date = bardatetime.strftime("%Y%m%d") bar.time = bardatetime.strftime("%H%M%S") # 将bar的时间改成提前一分钟 hour = bar.time[0:2] minute = bar.time[2:4] sec = bar.time[4:6] if minute == "00": minute = "59" h = int(hour) if h == 0: h = 24 hour = str(h - 1).rjust(2, '0') else: minute = str(int(minute) - 1).rjust(2, '0') bar.time = hour + minute + sec bar.datetime = datetime.strptime(' '.join([bar.date, bar.time]), '%Y%m%d %H%M%S') return bar # ---------------------------------------------------------------------- def jqdownloadMinuteBarBySymbol(symbol,startDate,endDate): """下载某一合约的分钟线数据""" start = time() cl = dbMinute[symbol] cl.ensure_index([('datetime', ASCENDING)], unique=True) # 添加索引 df = jq.get_price(setting[symbol],start_date = startDate,end_date = endDate, frequency='1m', fields=FIELDS,skip_paused = True) for ix, row in df.iterrows(): bar = generateVtBar(row, symbol) d = bar.__dict__ flt = {'datetime': bar.datetime} cl.replace_one(flt, d, True) end = time() cost = (end - start) * 1000 print(u'合约%s的分钟K线数据下载完成%s - %s,耗时%s毫秒' % (symbol, df.index[0], df.index[-1], cost)) print(jq.get_query_count()) def jqdownloadMappingExcel(exportpath = "C:\Project\\"): getfuture = jq.get_all_securities(types=['futures'], date=None) # list: 用来过滤securities的类型, list元素可选: ‘stock’, ‘fund’, ‘index’, ‘futures’, ‘etf’, ‘lof’, ‘fja’, ‘fjb’.types为空时返回所有股票, 不包括基金, 指数和期货 getfuture.to_excel( exportpath + "Mapping" + str(date.today()) + "futures.xls", index=True, header=True) # ---------------------------------------------------------------------- def downloadAllMinuteBar(days=10): """下载所有配置中的合约的分钟线数据""" print('-' * 50) print(u'开始下载合约分钟线数据') print('-' * 50) startDt = datetime.today() - days * timedelta(1) startDate = startDt.strftime('%Y-%m-%d') # 添加下载任务 enddt = datetime.today() endDate = enddt.strftime('%Y-%m-%d %H:%M:%S') jqdownloadMinuteBarBySymbol('rb1910', startDate, endDate) print('-' * 50) print u'合约分钟线数据下载完成' print('-' * 50) if __name__ == '__main__': # jqdownloadMappingExcel() #下载主力合约 downloadAllMinuteBar(days=10) #下载单个品种 # jqdownloadMinuteBarBySymbol('510050.XSHG',startDate,endDate)
以上是“怎么使用Joinquant做实盘行情数据”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
分享标题:怎么使用Joinquant做实盘行情数据
文章来源:http://pcwzsj.com/article/gjdihc.html