【线性回归】-创新互联
import pandas as pd
data = pd.read_csv(‘generated_data.csv’)
x = data.loc[:,‘x’]
y = data.loc[:,‘y’]
print(x,y)
from matplotlib import pyplot as plt
plt.scatter(x,y)
plt.show()
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
import numpy as np
x = np.array(x)
x = x.reshape(-1,1)
y = np.array(y)
y = y.reshape(-1,1)
print(type(x),x.shape,type(y),y.shape)
lr_model.fit(x,y)
y_predict = lr_model.predict(x)
print(y_predict)
y_3 = lr_model.predict([[3.5]])
print(y_3)
print(y)
a = lr_model.coef_
b = lr_model.intercept_
print(a,b)
from sklearn.metrics import mean_squared_error,r2_score
MSE = mean_squared_error(y,y_predict)
R2 = r2_score(y,y_predict)
print(MSE,R2)
plt.plot(y,y_predict)
plt.show()
import pandas as pd
import numpy as np
data = pd.read_csv(‘usa_housing_price.csv’)
data.head()
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10,10))
fig1 =plt.subplot(231)
plt.scatter(data.loc[:,‘Avg. Area Income’],data.loc[:,‘Price’])
plt.title(‘Price VS Income’)
fig2 =plt.subplot(232)
plt.scatter(data.loc[:,‘Avg. Area House Age’],data.loc[:,‘Price’])
plt.title(‘Price VS House Age’)
fig3 =plt.subplot(233)
plt.scatter(data.loc[:,‘Avg. Area Number of Rooms’],data.loc[:,‘Price’])
plt.title(‘Price VS Number of Rooms’)
fig4 =plt.subplot(234)
plt.scatter(data.loc[:,‘Area Population’],data.loc[:,‘Price’])
plt.title(‘Price VS Area Population’)
fig5 =plt.subplot(235)
plt.scatter(data.loc[:,‘size’],data.loc[:,‘Price’])
plt.title(‘Price VS size’)
plt.show()
X = data.loc[:,‘size’]
y = data.loc[:,‘Price’]
y.head()
X = np.array(X).reshape(-1,1)
print(X.shape)
from sklearn.linear_model import LinearRegression
LR1 = LinearRegression()
#train the model
LR1.fit(X,y)
y_predict_1 = LR1.predict(X)
print(y_predict_1)
from sklearn.metrics import mean_squared_error,r2_score
mean_squared_error_1 = mean_squared_error(y,y_predict_1)
r2_score_1 = r2_score(y,y_predict_1)
print(mean_squared_error_1,r2_score_1)
fig6 = plt.figure(figsize=(8,5))
plt.scatter(X,y)
plt.plot(X,y_predict_1,‘r’)
plt.show()
X_multi = data.drop([‘Price’],axis=1)
X_multi
#set up 2nd linear model
LR_multi = LinearRegression()
#train the model
LR_multi.fit(X_multi,y)
#make prediction
y_predict_multi = LR_multi.predict(X_multi)
print(y_predict_multi)
mean_squared_error_multi = mean_squared_error(y,y_predict_multi)
r2_score_multi = r2_score(y,y_predict_multi)
print(mean_squared_error_multi,r2_score_multi)
print(mean_squared_error_1)
fig7 = plt.figure(figsize=(8,5))
plt.scatter(y,y_predict_multi)
plt.show()
fig8 = plt.figure(figsize=(8,5))
plt.scatter(y,y_predict_1)
plt.show()
X_test = [65000,5,5,30000,200]
X_test = np.array(X_test).reshape(1,-1)
print(X_test)
y_test_predict = LR_multi.predict(X_test)
print(y_test_predict)
你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧
网站题目:【线性回归】-创新互联
链接地址:http://pcwzsj.com/article/geeoe.html