用什么库写Python命令行程序

这篇文章主要介绍“用什么库写Python命令行程序”,在日常操作中,相信很多人在用什么库写Python命令行程序问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”用什么库写Python命令行程序”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

在大箐山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、网站建设 网站设计制作按需策划设计,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销推广,成都外贸网站建设公司,大箐山网站建设费用合理。

一、设计理念

在讨论各个库的设计理念之前,我们先设计一个计算器程序,其实这个例子在 argparse 库的第一篇讲解中出现过,也就是:

  • 命令行程序接受一个位置参数,它能出现多次,且是数字

  • 默认情况下,命令行程序会求出给定的一串数字的最大值

  • 如果指定了选项参数 --sum,那么就会将求出给定的一串数字的和

希望从各个库实现该例子的代码中能进一步体会它们的设计理念。

2.1、argparse

argparse  的设计理念就是提供给你最细粒度的控制,你需要详细地告诉它参数是选项参数还是位置参数、参数值的类型是什么、该参数的处理动作是怎样的。总之,它就像是一个没有智能分析能力的初代机器人,你需要告诉它明确的信息,它才会根据给定的信息去帮助你做事情。

以下示例为 argparse 实现的 计算器程序:

import argparse  # 1. 设置解析器 parser = argparse.ArgumentParser(description='Calculator Program.')  # 2. 定义参数 # 添加位置参数 nums,在帮助信息中显示为 num # 其类型为 int,且支持输入多个,且至少需要提供一个 parser.add_argument('nums',  metavar='num', type=int, nargs='+',                     help='a num for the accumulator') # 添加选项参数 --sum,该参数被 parser 解析后所对应的属性名为 accumulate # 若不提供 --sum,默认值为 max 函数,否则为 sum 函数 parser.add_argument('--sum', dest='accumulate', action='store_const',                     const=sum, default=max,                     help='sum the nums (default: find the max)')   # 3. 解析参数 args = parser.parse_args(['--sum', '1', '2', '3']) print(args) # 结果:Namespace(accumulate=, nums=[1, 2, 3])  # 4. 业务逻辑 result = args.accumulate(args.nums) print(result)  # 基于上文的 ['--sum', '1', '2', '3'] 参数,accumulate 为 sum 函数,其结果为 6

从上述示例可以看到,我们需要通过 add_argument 很明确地告诉 argparse 参数长什么样:

  • 它是位置参数 nums,还是选项参数 --sum

  • 它的类型是什么,比如 type=int 表示类型是 int

  • 这个参数能重复出现几次,比如 nargs='+' 表示至少提供 1 个

  • 参数的是存什么的,比如 action='store_const' 表示存常量

然后它才根据给定的这些元信息来解析命令行参数(也就是示例中的 ['--sum', '1', '2', '3'])。

这是很计算机的思维,虽然冗长,但也带来了灵活性。

2.2、docopt

从 argparse 的理念可以看出,它是命令式的。这时候 docopt  另辟蹊径,声明式是不是也可以?一个命令行程序的帮助信息其实已然包含了这个命令行的完整元信息,那不就可以通过定义帮助信息来定义命令行?docopt  就是基于这样的想法去设计的。

声明式的好处在于只要你掌握了声明式的语法,那么定义命令行的元信息就会很简单。

以下示例为 docopt 实现的 计算器程序:

# 1. 定义接口描述/帮助信息 """Calculator Program.  Usage:   calculator.py [--sum] ...   calculator.py (-h | --help)  Options:   -h --help     Show help.   --sum         Sum the nums (default: find the max). """  from docopt import docopt  # 2. 解析命令行 arguments = docopt(__doc__, options_first=True, argv=['--sum', '1', '2', '3']) print(arguments) # 结果:{'--help': False, '--sum': True, '': ['1', '2', '3']}  # 3. 业务逻辑 nums = (int(num) for num in arguments[''])  if arguments['--sum']:     result = sum(nums) else:     result = max(nums)  print(result) # 基于上文的 ['--sum', '1', '2', '3'] 参数,处理函数为 sum 函数,其结果为 6

从上述示例可以看到,我们通过 __doc__ 定义了接口描述,这和 argparse 中 add_argument是等价的,然后 docopt  便会根据这个元信息把命令行参数转换为一个字典。业务逻辑中就需要对这个字典进行处理。

对比与 argparse:

  • 对于更为复杂的命令程序,元信息的定义上 docopt 会更加简单

  • 然而在业务逻辑的处理上,由于 argparse 在一些简单参数的处理上会更加便捷(比如示例中的情形),相对来说 docopt  转换为字典后就把所有处理交给业务逻辑的方式会更加复杂

2.3、click

命令行程序本质上是定义参数和处理参数,而处理参数的逻辑一定是与所定义的参数有关联的。那可不可以用函数和装饰器来实现处理参数逻辑与定义参数的关联呢?而  click 正好就是以这种使用方式来设计的。

click 使用装饰器的好处就在于用装饰器优雅的语法将参数定义和处理逻辑整合在一起,从而暗示了路由关系。相比于 argparse 和 docopt  需要自行对解析后的参数来做路由关系,简单了不少。

以下示例为 click 实现的 计算器程序:

import sys import click  sys.argv = ['calculator.py', '--sum', '1', '2', '3']  # 2. 定义参数 @click.command() @click.argument('nums', nargs=-1, type=int) @click.option('--sum', 'use_sum', is_flag=True, help='sum the nums (default: find the max)') # 1. 业务逻辑 def calculator(nums, use_sum):     """Calculator Program."""     print(nums, use_sum) # 输出:(1, 2, 3) True     if use_sum:         result = sum(nums)     else:         result = max(nums)      print(result) # 基于上文的 ['--sum', '1', '2', '3'] 参数,处理函数为 sum 函数,其结果为 6  calculator()

从上述示例可以看出,参数和对应的处理逻辑非常好地绑定在了一起,看上去就很直观,使得我们可以明确了解参数会怎么处理,这在有大量参数时显得尤为重要,这边是  click 相比于 argparse 和 docopt 最明显的优势。

此外,click 还内置了很多实用工具和额外能力,比如说 Bash 补全、颜色、分页支持、进度条等诸多实用功能,可谓是如虎添翼。

2.4、firefire

则是用一种面向广义对象的方式来玩转命令行,这种对象可以是类、函数、字典、列表等,它更加灵活,也更加简单。你都不需要定义参数类型,fire  会根据输入和参数默认值来自动判断,这无疑进一步简化了实现过程。

以下示例为 fire 实现的 计算器程序:

import sys import fire  sys.argv = ['calculator.py', '1', '2', '3', '--sum']  builtin_sum = sum  # 1. 业务逻辑 # sum=False,暗示它是一个选项参数 --sum,不提供的时候为 False # *nums 暗示它是一个能提供任意数量的位置参数 def calculator(sum=False, *nums):     """Calculator Program."""     print(sum, nums) # 输出:True (1, 2, 3)     if sum:         result = builtin_sum(nums)     else:         result = max(nums)      print(result) # 基于上文的 ['1', '2', '3', '--sum'] 参数,处理函数为 sum 函数,其结果为 6   fire.Fire(calculator)

从上述示例可以看出,fire 提供的方式无疑是最简单、并且最 Pythonic  的了。我们只需关注业务逻辑,而命令行参数的定义则和函数参数的定义融为了一体。

不过,有利自然也有弊,比如 nums  并没有说是什么类型,也就意味着输入字符串'abc'也是合法的,这就意味着一个严格的命令行程序必须在自己的业务逻辑中来对期望的类型进行约束。

二、横向对比

最后,我们横向对比下argparse、docopt、click 和 fire 库的各项功能和特点:

用什么库写Python命令行程序

到此,关于“用什么库写Python命令行程序”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


标题名称:用什么库写Python命令行程序
文章链接:http://pcwzsj.com/article/gecdid.html