如何进行Java最优二叉树的哈夫曼算法的简单实现
这篇文章将为大家详细讲解有关如何进行Java最优二叉树的哈夫曼算法的简单实现,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
成都创新互联网站建设公司是一家服务多年做网站建设策划设计制作的公司,为广大用户提供了成都网站设计、成都做网站,成都网站设计,广告投放平台,成都做网站选成都创新互联,贴合企业需求,高性价比,满足客户不同层次的需求一站式服务欢迎致电。
最优二叉树也称哈夫曼树,讲的直白点就是每个结点都带权值,我们让大的值离根近、小的值离根远,实现整体权值(带权路径长度)最小化。
哈夫曼算法的思想我认为就是上面讲的,而它的算法实现思路是这样的:从根结点中抽出权值最小的两个(涉及排序,但是我这个实现代码没做严格的排序,只有比较)合并出新的根结点重新加入排序(被抽出来的两个自然是变成非根结点了啊),就这样循环下去,直到合并完成,我们得到一颗最优二叉树——哈夫曼树。
说明:(1)哈夫曼树有n个叶子结点,则我们可以推出其有n-1个分支结点。因此我在定义名为huffmanTree的HuffmanNode类型数组时定义长度为2*n-1。(2)这里排序相关没有做得很好,只是为了实现而实现,以后慢慢完善。(3)理论上讲哈夫曼树应该是不仅仅局限于数值,能compare就行,但这里只用int表示。
下面是代码:
首先定义哈夫曼树结点
public class HuffmanNode {
private int weight = -1;
private int parent = -1;
private int left = -1;
private int right = -1;
public HuffmanNode(int weight) { super();
this.weight = weight; }
public HuffmanNode(int weight, int left, int right) { super();
this.weight = weight;
this.left = left;
this.right = right; }
public int getWeight() {
return weight; }
public void setWeight(int weight) {
this.weight = weight; }
public int getParent() {
return parent; }
public void setParent(int parent) {
this.parent = parent; }
public int getLeft() {
return left; }
public void setLeft(int left) {
this.left = left; }
public int getRight() {
return right; } public void setRight(int right) {
this.right = right; } @Override
public String toString() {
return "HuffmanNode [weight=" + weight + ", parent=" + parent + "," + " left=" + left + ", right=" + right + "]";
}
}
定义一下哈夫曼树的异常类
public class TreeException extends RuntimeException {
private static final long serialVersionUID = 1L;
public TreeException() {}
public TreeException(String message) {
super(message);
}}
编码实现(做的处理不是那么高效)
public class HuffmanTree {
protected HuffmanNode[] huffmanTree;
public HuffmanTree(int[] leafs) {
//异常条件判断 if (leafs.length <= 1) {
throw new TreeException("叶子结点个数小于2,无法构建哈夫曼树"); }
//初始化储存空间 huffmanTree = new HuffmanNode[leafs.length*2-1];
//构造n棵只含根结点的二叉树 for (int i = 0; i < leafs.length; i++) {
HuffmanNode node = new HuffmanNode(leafs[i]);
huffmanTree[i] = node; }
//构造哈夫曼树的选取与合并 for (int i = leafs.length; i < huffmanTree.length; i++) {
//获取权值最小的结点下标 int miniNum_1 = selectMiniNum1();
//获取权值次小的结点下标 int miniNum_2 = selectMiniNum2();
if (miniNum_1 == -1 || miniNum_2 == -1) { return;
}
//两个权值最小的结点合并为新节点
HuffmanNode node = new HuffmanNode(huffmanTree[miniNum_1].getWeight() + huffmanTree[miniNum_2].getWeight(), miniNum_1, miniNum_2);
huffmanTree[i] = node; huffmanTree[miniNum_1].setParent(i);
huffmanTree[miniNum_2].setParent(i);
} }
/** * 获取权值最小的结点下标
* @return */ private int selectMiniNum1() {
//最小值 int min = -1;
//最小值下标 int index = -1;
//是否完成最小值初始化 boolean flag = false;
//遍历一遍 for (int i = 0; i < huffmanTree.length; i++) {
//排空、只看根结点,否则跳过
if (huffmanTree[i] == null || huffmanTree[i].getParent() != -1) {
continue; }
else if (!flag) { //没初始化先初始化然后跳过
//初始化 min = huffmanTree[i].getWeight();
index = i;
//以后不再初始化min flag = true;
//跳过本次循环 continue;
} int tempWeight = huffmanTree[i].getWeight();
//低效比较 if (tempWeight < min) {
min = tempWeight;
index = i;
}
} return index; }
/** * 获取权值次小的结点下标 * @return */ private int selectMiniNum2() {
//次小值 int min = -1;
//是否完成次小值初始化 boolean flag = false;
//最小值下标(调用上面的方法) int index = selectMiniNum1();
//最小值都不存在,则次小值也不存在 if (index == -1) {
return -1; }
//次小值下标 int index2 = -1;
//遍历一遍 for (int i = 0; i < huffmanTree.length; i++) {
//最小值不要、排空、只看根结点,否则跳过
if (index == i || huffmanTree[i] == null || huffmanTree[i].getParent() != -1) {
continue;
}
else if (!flag) {
//没初始化先初始化然后跳过
//初始化 min = huffmanTree[i].getWeight();
index2 = i;
//以后不再初始化min flag = true;
//跳过本次循环 continue;
} int tempWeight = huffmanTree[i].getWeight();
//低效比较 if (tempWeight < min) { min = tempWeight;
index2 = i;
}
} return index2;
}
}
测试类1
public class HuffmanTreeTester {
public static void main(String[] args) {
int[] leafs = {1, 3, 5, 6, 2, 22, 77, 4, 9};
HuffmanTree tree = new HuffmanTree(leafs);
HuffmanNode[] nodeList = tree.huffmanTree;
for (HuffmanNode node : nodeList) { System.out.println(node);
}
}
}
测试结果1
HuffmanNode [weight=1, parent=9, left=-1, right=-1]HuffmanNode [weight=3, parent=10, left=-1, right=-1]HuffmanNode [weight=5, parent=11, left=-1, right=-1]HuffmanNode [weight=6, parent=12, left=-1, right=-1]HuffmanNode [weight=2, parent=9, left=-1, right=-1]HuffmanNode [weight=22, parent=15, left=-1, right=-1]HuffmanNode [weight=77, parent=16, left=-1, right=-1]HuffmanNode [weight=4, parent=11, left=-1, right=-1]HuffmanNode [weight=9, parent=13, left=-1, right=-1]HuffmanNode [weight=3, parent=10, left=0, right=4]HuffmanNode [weight=6, parent=12, left=1, right=9]HuffmanNode [weight=9, parent=13, left=7, right=2]HuffmanNode [weight=12, parent=14, left=3, right=10]HuffmanNode [weight=18, parent=14, left=8, right=11]HuffmanNode [weight=30, parent=15, left=12, right=13]HuffmanNode [weight=52, parent=16, left=5, right=14]HuffmanNode [weight=129, parent=-1, left=15, right=6]
图形表示:
测试类2
public class HuffmanTreeTester { public static void main(String[] args) { int[] leafs = {2, 4, 5, 3}; HuffmanTree tree = new HuffmanTree(leafs); HuffmanNode[] nodeList = tree.huffmanTree; for (HuffmanNode node : nodeList) { System.out.println(node); } }}
测试结果2
HuffmanNode [weight=2, parent=4, left=-1, right=-1]HuffmanNode [weight=4, parent=5, left=-1, right=-1]HuffmanNode [weight=5, parent=5, left=-1, right=-1]HuffmanNode [weight=3, parent=4, left=-1, right=-1]HuffmanNode [weight=5, parent=6, left=0, right=3]HuffmanNode [weight=9, parent=6, left=1, right=2]HuffmanNode [weight=14, parent=-1, left=4, right=5]
关于如何进行Java最优二叉树的哈夫曼算法的简单实现就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
文章标题:如何进行Java最优二叉树的哈夫曼算法的简单实现
本文URL:http://pcwzsj.com/article/gdeidj.html