如何用C语言代码实现多项式相加
这篇文章主要介绍了如何用C语言代码实现多项式相加的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇如何用C语言代码实现多项式相加文章都会有所收获,下面我们一起来看看吧。
10多年的兴国网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整兴国建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“兴国网站设计”,“兴国网站推广”以来,每个客户项目都认真落实执行。
具体代码如下
//多项式的相加和相乘 #include#include #pragma warning(disable:4996)//兼容scanf typedef struct node { int coef; int expon; struct node* link; }Polynode,*Polynomial; Polynomial InsertPolyLinklist(Polynomial in,Polynomial Pread) { Pread->link = in; Pread = in; in->link = NULL; return Pread; } Polynomial ReadPoly(void) { Polynomial Pread = (Polynomial)malloc(sizeof(Polynode)); Pread->link = NULL; Polynomial H = Pread; int N; scanf("%d ", &N); while (N--) { Polynomial p = (Polynomial)malloc(sizeof(Polynode)); scanf("%d %d", &p->coef, &p->expon); Pread= InsertPolyLinklist(p,Pread); } Polynomial F; F = H->link; free(H); return F; } void PrintPoly(Polynomial F) { while(F != NULL) { printf("%d %d ", F->coef, F->expon); F = F->link; } printf("\n"); } Polynomial Add(Polynomial p1, Polynomial p2) { Polynomial t1=p1,t2=p2; Polynomial p=(Polynomial)malloc(sizeof(Polynode)); p->link = NULL; Polynomial q = p; Polynomial read; while (t1&&t2) { if (t1->expon == t2->expon) { if (t1->coef + t2->coef) { t1->coef = t1->coef + t2->coef; t1->expon = t1->expon; read = t1; q->link = read; q = read; t1 = t1->link; t2 = t2->link; } } else { if (t1->expon > t2->expon){ read = t1; q->link = read; q = read; t1 = t1->link; } else { if (t1->expon < t2->expon) { read = t2; q->link = read; q = read; t2 = t2->link; } } } } if (t1) { q->link = t1; } if (t2) { q->link = t2; } Polynomial F = p->link; free(p); return F; } int main(void) { Polynomial p1, p2, pp, ps; p1 = ReadPoly(); PrintPoly(p1); p2 = ReadPoly(); PrintPoly(p2); pp = Add(p1, p2); PrintPoly(pp); // ps = Mult(p1, p2); // PrintPoly(ps); return 0; }
关于“如何用C语言代码实现多项式相加”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“如何用C语言代码实现多项式相加”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注创新互联行业资讯频道。
当前名称:如何用C语言代码实现多项式相加
链接分享:http://pcwzsj.com/article/gceshp.html