nosql聚合,常见的nosql数据库
如何用好NoSQL
No SQL DB是一种和关系型数据库相对应的对象数据库。按照数据模型保存性质将当前NoSQL分为四种:
红山ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
1.Key-value stores键值存储, 保存keys+BLOBs
2.Table-oriented 面向表, 主要有Google的BigTable和Cassandra.
3.Document-oriented面向文本, 文本是一种类似XML文档,MongoDB 和 CouchDB
4.Graph-oriented 面向图论. 如Neo4J.
关系型数据库的弊端:
关系型数据库的历史已经有30余年了,因此,在某些情况下,关系型数据库的弱点就会暴露出来:
1. “对象-关系 阻抗不匹配”。关系模型和面向对象模型在概念上存在天然的不匹配的地方,比如对象模型当中特有的“继承”,“组合”,“聚合”,“依赖”的概念在关系模型当中是不存在的。
2. “模式演进”。即随着时间的推移,需要对数据库模式进行调整以便适应新的需求,然而,对数据库模式的调整是的成本很高的动作,因此很多设计师在系统设计之初会设计一个兼容性很强的数据库模式,以应对将来可能出现的需求,然而在现在的web系统开发过程中,系统的变更更加频繁,几乎无法预先设计出一种“万能”的数据库模式以满足所有的需求,因此 模式演进的弊端就愈发凸显。
3. 关系型数据库处理 稀疏表时的性能非常差。
4. networkoriented data 很适合处理 人工智能、社交网络中的一些需求。
所以,各种各样的No SQL DB 出现了,这里只简单介绍下Neo4J 的基本知识。
Neo 数据模型
Neo4J 是一个基于图实现的No SQL DB, 其基本的数据类型有如下几种:
Node, Relationship, Property.
Node 对应于图中的 节点,Relationship 对应图中的边,Node 和 Relationship 都可以拥有Property,
Property 的数据结构为。
数据遍历
elasticsearch可以代替NoSQL吗
我们使用Elasticsearch存储的文档数量接近50亿(算上1份复制,接近100亿文档),总共10个数据节点和2个元数据节点(48GB内存,8核心CPU,ES使用内存达到70%),每天的文档增量大概是3000W条(速度持续增加中)。目前来看,单个文档的查询效率基本处于实时状态;对于1到2周的数据的聚合统计操作也可以在10秒之内返回结果。
但是,还有提升的空间:
1. 对于查询单条数据的应用场景来说,我们可以使用ES的路由机制,将同一索引内的具有相同特征(比如具有相同的userid)的文档全部存储于一个节点上,这样我们之后的查询都可以直接定位到这个节点上,而不用将查询广播道所有的节点上;
2. 随着数据节点的增加,适当增加分片数量,提升系统的分布水平,也可以通过分而治之的方式优化查询性能;
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对操作的事性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合操作,没有大量的单文档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。如果让我选择的话,我会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。
在我的工作过程中,我深切体会到:经验固然是一个很重要的东西,因为它能够帮助我们少走很多弯路,但同时也应该看到经验的另一面——它会变成一个笼子,将我们闭塞其中,使我们错过一些可能更好的解决方案,关键是我们要学会尝试,接触新的世界。
memcached 和nosql 的关系,memcache属于nosql数据库吗?怎么形容他们的关系呢?
非关系型的数据库统称NoSQL
memcache是非关系型数据库里的一种,属于NoSQL
就像mysql属性关系型数据库一样
大数据应用程序最佳选择:是SQL还是NoSQL
执行大数据[注]项目的企业面对的关键决策之一是使用哪个数据库,SQL还是NoSQL?SQL有着骄人的业绩,庞大的安装基础;而NoSQL正在获得可观的收益,且有很多支持者。我们来看看两位专家对这个问题的看法。
专家
·VoltDB公司首席技术官Ryan Betts表示,SQL已经赢得了大型企业的广泛部署,大数据是它可以支持的另一个领域。
·Couchbase公司首席执行官Bob Wiederhold表示,NoSQL是可行的选择,并且从很多方面来看,它是大数据的最佳选择,特别是涉及到可扩展性时。
SQL经历时间的考验,并仍然在蓬勃发展
VoltDB公司首席技术官Ryan Betts
结构化查询语言(SQL)是经过时间考验的胜利者,它已经主宰了几十年,目前大数据公司和组织(例如谷歌、Facebook、Cloudera和Apache)正在积极投资于SQL。
在成为主导技术(例如SQL)后,有时候我们很容易忘记其优越性。SQL的独特优势包括:
1. SQL能够加强与数据的交互,并允许对单个数据库设计提出问题。这是很关键的特征,因为无法交互的数据基本上是没用的,并且,增强的交互性能够带来新的见解、新的问题和更有意义的未来交互。
2. SQL是标准化的,使用户能够跨系统运用他们的知识,并对第三方附件和工具提供支持。
3. SQL能够扩展,并且是多功能和经过时间验证的,这能够解决从快写为主导的传输到扫描密集型深入分析等问题。
4. SQL对数据呈现和存储采用正交形式,一些SQL系统支持JSON和其他结构化对象格式,比NoSQL具有更好的性能和更多功能。
虽然NoSQL的出现带来了一些影响,但SQL仍然主导着市场,并在大数据领域赢得了很多投资和广泛部署。
NoSQL的说法很含糊,对于本次讨论,我借用Rick Cattell对NoSQL的定义,即提供简单操作(例如密钥/数值存储)或简单记录和索引,并专注于这些简单操作的横向可扩展性的系统。
很显然,现在很多新的数据库并不是都一样,认识每种数据库背后的原理以及潜在问题是成功的关键。NoSQL的主要特点使其更适合于特定的问题。例如,图形数据库更适合于数据通过关系组织的情况,而专门的文本搜索系统更适合于需要实时搜索的情况。
在这里,让我们看看SQL系统的主要优势和差异化功能:
* SQL可实现交互性。 SQL是一种声明性查询语言。用户说出他们想要什么(例如,显示过去五年三月份期间顶级客户的地理位置),数据库内部就会构件算法并提取请求的结果。相比之下,NoSQL编程创新MapReduce是一种程序性查询技术。在用户提出请求时,MapReduce要求用户不仅说出自己想要什么,而且要求他们陈述如何产生答案。
这听起来像一个无趣的技术差异,但这很关键,原因在于:首先,声明性SQL查询更容易通过图形化工具以及点击报告构建器来构建。这让分析师、操作员、管理者和其他不具备软件编程能力的员工进行数据库查询;其次,数据库引擎可以利用内部信息来选择最有效的算法。改变数据库的物理布局或数据库,最佳算法仍然能够计算出来。而在程序性系统中,编程人员需要重新访问和重新编程算法,这是非常昂贵且容易出错的过程。
市场理解这个关键区别。在2010年,谷歌宣布部署SQL来补充MapReduce,主要受内部用户需求所驱动。最近,Facebook发布了Presto(一种SQL部署)来查询其PB级HDFS集群。根据Facebook表示:“随着我们的仓库增长到PB级,以及我们的需求变化,我们清楚地意识到,我们需要一个提供低延时查询的互动系统。”此外,Cloudera也正在构建Impala—另一个基于HDFS的SQL部署。
* SQL是标准化的。 虽然供应商有时候会添加自己的语言到SQL界面,但SQL的核心是标准化的,还有其他规格(例如ODBC和JDBC)提供广泛可用的稳定界面到SQL存储。这带来了一个管理和操作工具生态系统,可以在SQL系统之上设计、监控、检查、探索和构建应用程序。
SQL用户和程序员可用跨多个后端系统重复使用其API和UI知识,减少了应用程序的开发时间。标准化还允许声明性第三方提取、转换、加载(ETL)工具,使企业可以在数据库之间以及跨系统传输数据。
* SQL可扩展。 认为SQL必须牺牲以获得可扩展性的看法,完全是错误的。如前所述,Facebook创建了一个SQL界面来查询PB级数据。SQL能够非常有效地运行极快的ACID传输。SQL对数据存储和索引提供的抽象[注]化允许跨各种问题和数据集大小的一致使用,让SQL可以跨集群复制数据存储有效地运行。使用SQL作为界面独立于构建云、规模或HA系统,SQL中并没有什么在阻止和限制容错、高可用性和复制。事实上,所有现代SQL系统支持云友好型横向可扩展性、复制和容错性。
* SQL支持JSON。 几年前,很多SQL系统增加了XML文档支持。现在,随着JSON成为一种流行的数据交换格式,SQL供应商也纷纷加入了JSON型的支持。基于现在灵活的编程过程和web基础设施的正常运行时间要求,我们很需要结构化数据类型的支持。Oracle 12c、PostgreSQL 9.2、VoltDB和其他支持JSON的数据库,通常具有优于“原生”JSON的性能。
SQL将继续赢得市场份额,并会继续看到新的投资和部署。NoSQL数据库提供专有查询语言或简单的键值语义,而没有更深层次的技术差异化。现代SQL系统提供可扩展性的同时,还支持更丰富的查询语义,并有庞大的用户安装基础,广泛的生态系统整合和深度企业部署。
NoSQL更适合大数据应用程序
Couchbase公司首席执行官Bob Wiederhold
NoSQL越来越多地被认为是关系型数据库的可行替代品,特别是对于大数据应用程序。此外,无模式数据模型通常更适合于现在捕捉和处理的数据种类和类型。
当我们谈论NoSQL领域的大数据时,我们指的是从操作数据库读取和写入。不要将操作数据库与分析数据库混淆,这通常会查看大量数据,并从这些数据获取可视性。
虽然操作数据库的大数据看起来不具有可分析性,但操作数据库通常会存储超大量用户的大型数据集,这些用户经常需要访问数据来实时执行交易。这种数据库的操作规模也解释了NoSQL的关键特性,也就是为什么NoSQL是大数据应用程序的关键的原因。
NoSQL是可扩展性的关键
每次技术行业经历硬件发展的根本性转变时,都会出现一个拐点。在数据库领域,从纵向扩展到横向扩展的转变推动了NoSQL的发展。关系型数据库(包括来自甲骨文和IBM的数据库)是纵向扩展。也就是说,它们是集中式、共享一切的技术,只能通过增加更多昂贵的硬件来扩展。
而NoSQL数据库是分布式横向扩展技术。它们使用了分布式节点集(称为集群)来提供高度弹性扩展功能,让用户可以添加节点来动态处理负载。
分布式横向扩展的做法通常要比纵向做法更加便宜。商业关系型数据库的授权费用也让人望而却步,因为他们的价格是按每台服务器来计算。另一方面,NoSQL数据库通常是开源技术,按照运行的服务器集群收费,而且价格相对便宜。
NoSQL是灵活性的关键
关系型数据库和NoSQL数据模型有很大的不同。关系型模式获取数据,并将数据分配到很多相互关联的表中,这些表通过外键相互应用。
当用户需要对数据集运行查询时,所需信息需要从多个表中收集(通常涉及数百个企业应用程序),并结合这些信息,再提供给应用程序。同样地,当写入数据时,需要在多个表协调和执行写入。当数据相对较少,并且,数据以较慢速度流入数据库时,关系型数据库通常能够捕捉和存储信息。然而,现在的应用程序通常需要快速写入(和读取)海量数据。
NoSQL数据库采用非常不同的模式。在其核心,NoSQL数据库其实是“NoREL”,或者说非关系型,这意味着它们没有依赖于表以及表之间的联系,以存储和组织信息。例如,以文档为导向的NoSQL数据库获取你想要存储的数据,并采用JSON格式整合到文档中。每个JSON文档可以被你的应用程序视为一个对象。JSON文档可能会提取跨越25个表的数据,将数据集成到一个文档中。
聚合这些信息可能会导致信息重复,但由于存储已不再是一个成本问题,数据模型灵活性、发布所产生文档的简便性以及读取和写入性能提高,让这成为不错的选择。
NoSQL是大数据应用程序的关键
通过第三方(包括社交媒体网站),数据正变得越来越容易捕捉和访问。这些数据包括:个人用户信息、地理位置数据、用户生产的内容、机器记录数据和传感器产生的数据。企业还可以依赖于大数据来推动其关键任务型应用程序。同时,企业正在转向到NoSQL数据库,因为这种数据库非常适合现在新型的数据类型。
开发人员想要一个灵活的数据库,可以很容易适应新的数据类型,并且,不会受第三方数据供应商的内容结构变化的影响。大多数新数据是非结构化和半结构化,因此,开发人员也需要能够有效存储这些数据的数据库。然而,关系型数据库采用的严格定义的基于模式的做法让其不可能快速整合新数据类型,并且很不适合于非结构化和半结构化数据。
总体来说,随着web和移动应用程序的增加、新的趋势、网上消费者行为的转变以及新的数据类型的出现,行业需要能够提供可扩展的灵活的数据库技术来管理和访问数据。NoSQL技术是有效满足这些需求的唯一可行解决方案。
AWS开源可跨关联式与NoSQL数据库的查询语言PartiQL
AWS推出了与SQL兼容的查询语言PartiQL,只要数据库查询引擎提供PartiQL支持,使用者就能以PartiQL单一查询关联式数据库的结构化资料,以及开放资料格式中的巢状资料或是半结构化资料,甚至还能用来查询NoSQL或是文件数据库中无固定结构(Schema-less)的资料。除了AWS自家的数据库服务,NoSQL数据库Couchbase Server也承诺将会支持PartiQL。
企业资料分散在关联式数据库、非关联式数据库以及资料湖泊中。高度结构化的资料,储存在SQL数据库或是资料仓储;无固定结构的资料则由键值储存、图形数据库(Graph Database)、分类帐数据库或是时间序列数据库等NoSQL数据库处理;而在资料湖泊中的资料,可能也有部分缺乏结构,或是可能为巢状或是多值结构。不同的资料类型适用于不同的使用案例,而每种类型的资料,可能都有自己的查询语言。
不同的资料储存对应不同的查询语言,当企业更换资料格式或是数据库引擎时,可能还需要跟着改变应用程式和查询语法,AWS提到,这对于资料的应用,特别是使用资料湖泊的灵活性与效率,有着很大的阻碍。为了统一不同类型数据库存取方法,AWS发布了查询语言PartiQL,这是个与SQL兼容的查询语言,可以用来查询以各种格式储存在各地的资料。
用户可以使用PartiQL来查询关联式数据库,像是在Redshift实作交易或是资料分析等应用,或对于Amazon S3资料湖泊的开放资料格式,同样能使用PartiQL对巢状资料与半结构化资料例如Amazon Ion格式进行查询,另外,PartiQL也可用于文件数据库等NoSQL数据库,查询无固定结构的资料。
AWS表示,PartiQL的出现,是为了满足自家查询和转换大量资料的需求,其提供严格的SQL兼容性,可与标准SQL混合使用,执行连接(Join)、过滤(Filtering)与聚合(Aggregation)操作,并以最小扩充支持巢状和半结构化资料,让开发者以简单且一致的方法,不需要更改查询语言,就能查询各种格式和服务的资料。
PartiQL具格式独立性与储存独立性,PartiQL语法和语义不依赖任何资料格式,无论使用者是要查询JSON、Parquet、ORC、CSV还是Ion等格式,查询语句的写法都相同,PartiQL的查询在综合逻辑类型系统上运作,才对应到不同底层的格式。而PartiQL也不相依于特定资料储存,因此适用于不同的底层资料储存。
虽然过去针对跨不同类型数据库查询的问题,已有不少解决方案,AWS指出,像是Postgres JSON同样也兼容于SQL,但是却无法良好地处理JSON巢状资料;而半结构化查询语言,虽然能良好处理巢状资料,但却无法与SQL语言兼容。AWS提到,PartiQL是第一个能够完全解决这些问题的查询语言。
目前AWS已在自家多项服务支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下来几个月将会有更多的AWS服务支持PartiQL,Couchbase也公布将加入支持PartiQL的行列。现在PartiQL以Apache2.0授权许可开源,公开教学、规范以及参考实作,所有社群都能使用并参与贡献。
分享标题:nosql聚合,常见的nosql数据库
分享网址:http://pcwzsj.com/article/dssiidp.html