点赞nosql,点赞达人秀
NoSQL数据库是否意味着缺乏安全性?
NoSQL薄弱的安全性会给企业带来负面影响 。Imperva公司创始人兼CTO Amichai Shulman如是说。在新的一年中,无疑会有更多企业开始或筹划部署NoSQL。方案落实后就会逐渐发现种种安全问题,因此早做准备才是正确的选择。 作为传统关系型数据库的替代方案,NoSQL在查询中并不使用SQL语言,而且允许用户随时变更数据属性。此类数据库以扩展性良好著称,并能够在需要大量应用程序与数据库本身进行实时交互的交易处理任务中发挥性能优势,Couchbase创始人兼产品部门高级副总裁James Phillips解释称:NoSQL以交易业务为核心。它更注重实时处理能力并且擅长直接对数据进行操作,大幅度促进了交互型软件系统的发展。Phillips指出。其中最大的优势之一是能够随时改变(在属性方面),由于结构性的弱化,修改过程非常便捷。 NoSQL最大优势影响其安全性 NoSQL的关键性特色之一是其动态的数据模型,Shulman解释道。我可以在其运作过程中加入新的属性记录。因此与这种结构相匹配的安全模型必须具备一定的前瞻性规划。也就是说,它必须能够了解数据库引入的新属性将引发哪些改变,以及新加入的属性拥有哪些权限。然而这个层面上的安全概念目前尚不存在,根本没有这样的解决方案。 根据Phillips的说法,某些NoSQL开发商已经开始着手研发安全机制,至少在尝试保护数据的完整性。在关系型数据库领域,如果我们的数据组成不正确,那么它将无法与结构并行运作,换言之数据插入操作整体将宣告失败。目前各种验证规则与完整性检查已经比较完善,而事实证明这些验证机制都能在NoSQL中发挥作用。我们与其他人所推出的解决方案类似,都会在插入一条新记录或是文档型规则时触发,并在执行过程中确保插入数据的正确性。 Shulman预计新用户很快将在配置方面捅出大娄子,这并非因为IT工作人员的玩忽职守,实际上主要原因是NoSQL作为一项新技术导致大多数人对其缺乏足够的知识基础。Application Security研发部门TeamSHATTER的经理Alex Rothacker对上述观点表示赞同。他指出,培训的一大问题在于,大多数NoSQL的从业者往往属于新生代IT人士,他们对于技术了解较多,但往往缺乏足够的安全管理经验。 如果他们从传统关系型数据库入手,那么由于强制性安全机制的完备,他们可以在使用中学习。但NoSQL,只有行家才能通过观察得出正确结论,并在大量研究工作后找到一套完备的安全解决方案。因此可能有90%的从业者由于知识储备、安全经验或是工作时间的局限而无法做到这一点。 NoSQL需在安全性方面进行优化 尽管Phillips认同新技术与旧经验之间存在差异,但企业在推广NoSQL时加大对安全性的关注会起到很大程度的积极作用。他认为此类数据存储机制与传统关系类数据库相比,其中包含着的敏感类信息更少,而且与企业网络内部其它应用程序的接触机会也小得多。 他们并不把这项新技术完全当成数据库使用,正如我们在收集整理大量来自其它应用程序的业务类数据时,往往也会考虑将其作为企业数据存储机制一样,他补充道。当然,如果我打算研发一套具备某种特定功能的社交网络、社交游戏或是某种特殊web应用程序,也很可能会将其部署于防火墙之下。这样一来它不仅与应用程序紧密结合,也不会被企业中的其它部门所触及。 但Rothacker同时表示,这种过度依赖周边安全机制的数据库系统也存在着极其危险的漏洞。一旦系统完全依附于周边安全模型,那么验证机制就必须相对薄弱,而且缺乏多用户管理及数据访问方面的安全保护。只要拥有高权限账户,我们几乎能访问存储机制中的一切数据。举例来说,Brian Sullivan就在去年的黑帽大会上演示了如何在完全不清楚数据具体内容的情况下,将其信息罗列出来甚至导出。 而根据nCircle公司CTO Tim ‘TK’ Keanini的观点,即使是与有限的应用程序相关联,NoSQL也很有可能被暴露在互联网上。在缺少严密网络划分的情况下,它可能成为攻击者窥探存储数据的薄弱环节。因为NoSQL在设计上主要用于互联网规模的部署,所以它很可能被直接连接到互联网中,进而面临大量攻击行为。 其中发生机率最高的攻击行为就是注入式攻击,这也是一直以来肆虐于关系类数据库领域的头号公敌。尽管NoSQL没有将SQL作为查询语言,也并不代表它能够免受注入式攻击的威胁。虽然不少人宣称SQL注入在NoSQL这边不起作用,但其中的原理是完全一致的。攻击者需要做的只是改变自己注入内容的语法形式,Rothacker解释称。也就是说虽然SQL注入不会出现,但JavaScript注入或者JSON注入同样能威胁安全。 此外,攻击者在筹划对这类数据库展开侵袭时,也很可能进一步优化自己的工具。不成熟的安全技术往往带来这样的窘境:需要花费大量时间学习如何保障其安全,但几乎每个IT人士都能迅速掌握攻击活动的组织方法。因此我认为攻击者将会始终走在安全部署的前面,Shulman说道。遗憾的是搞破坏总比防范工作更容易,而我们已经看到不少NoSQL技术方面的公开漏洞,尤其是目前引起热议的、以JSON注入为载体的攻击方式。 NoSQL安全性并非其阻碍 然而,这一切都不应该成为企业使用NoSQL的阻碍,他总结道。我认为归根结底,这应该算是企业的一种商业决策。只要这种选择能够带来吸引力巨大的商业机遇,就要承担一定风险,Shulman解释道。但应该采取一定措施以尽量弱化这种风险。 举例来说,鉴于数据库对外部安全机制的依赖性,Rothacker建议企业积极考虑引入加密方案。他警告称,企业必须对与NoSQL相对接的应用程序代码仔细检查。换言之,企业必须严格挑选负责此类项目部署的人选,确保将最好的人才用于这方面事务,Shulman表示。当大家以NoSQL为基础编写应用程序时,必须启用有经验的编程人员,因为客户端软件是抵挡安全问题的第一道屏障。切实为额外缓冲区的部署留出时间与预算,这能够让员工有闲暇反思自己的工作内容并尽量多顾及安全考量多想一点就是进步。综上所述,这可能与部署传统的关系类数据库也没什么不同。 具有讽刺意味的是,近年来数据库应用程序在安全性方面的提升基本都跟数据库本身没什么关系,nCircle公司安全研究及开发部门总监Oliver Lavery如是说。
十余年专注成都网站制作,成都定制网站,个人网站制作服务,为大家分享网站制作知识、方案,网站设计流程、步骤,成功服务上千家企业。为您提供网站建设,网站制作,网页设计及定制高端网站建设服务,专注于成都定制网站,高端网页制作,对阳光房等多个领域,拥有丰富的网站建设经验。
Redis的主要功能?
缓存:这应该是 Redis 最主要的功能了,也是大型网站必备机制,合理地使用缓存不仅可以加 快数据的访问速度,而且能够有效地降低后端数据源的压力。
共享Session:对于一些依赖 session 功能的服务来说,如果需要从单机变成集群的话,可以选择 redis 来统一管理 session。消息队列系统:消息队列系统可以说是一个大型网站的必备基础组件,因为其具有业务 解耦、非实时业务削峰等特性。Redis提供了发布订阅功能和阻塞队列的功 能,虽然和专业的消息队列比还不够足够强大,但是对于一般的消息队列功能基本可以满足。比如在分布式爬虫系统中,使用 redis 来统一管理 url队列。
分布式锁:在分布式服务中。可以利用Redis的setnx功能来编写分布式的锁,虽然这个可能不是太常用。 当然还有诸如排行榜、点赞功能都可以使用 Redis 来实现,但是 Redis 也不是什么都可以做,比如数据量特别大时,不适合 Redis,我们知道 Redis 是基于内存的,虽然内存很便宜,但是如果你每天的数据量特别大,比如几亿条的用户行为日志数据,用 Redis 来存储的话,成本相当的高。
哪个属于Nosql数据库
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
常见的Nosql数据库有:
一、Redis数据库
Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
二、MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
一、易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
二、大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。
三、灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。
四、高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。
参考资料来源:百度百科-NoSQL
NoSQL会取代完全取代关系型数据库吗?
对此,前Google工程师,Milo(本地商店搜索引擎)创始人Ted Dziuba最近发表标题惊人的博客“I Can't Wait for NoSQL to Die”,对NoSQL的适用范围进行了分析。他认为, NoSQL也会带来一连串的新问题,并不会成为主流,无法取代关系型数据库。 他的理由是:Cassandra等NoSQL数据库在使用上并不方便,比如,修改column family定义时就需要重启。而且NoSQL更适合Google那样的规模,而一般的互联网公司都不是Google,早早地去考虑Google那样的规模的可扩展性,纯粹是浪费时间,存在巨大的商业风险。 他还透露,即使在Google,AdWords这样的关键产品也是基于MySQL实现的。 他在文中最后表示,NoSQL当然死不了,但是 它最终会被边缘化,就像Rails被NoSQL边缘化一样 Dziuba的文章因为言辞激烈,在社区里引起了强烈反应。 SQL数据库阵营赞同者大有人在。craigslist工程师、著名的MySQL专家Jeremy Zawodny表示,在读此文的时候,不时会心一笑。他说, NoSQL运动只是软件不断进化进程中的正常现象 。关系型数据库也会继续发展,MySQL社区不断推出的XtraDB或InnoDB插件, PBXT, Drizzle都是证据。各种技术竞争的结果是,我们获得了更多解决问题的选择。 drizzle项目开发者Eric Day也表示,NoSQL有很多值得学习的,但是目前大部分实际项目的最佳选择还是关系型数据库。 NoSQL阵营当然不会坐视不理,Cassandra项目组的Eric Evans表示,Dziuba提到Cassandra修改column family定义的问题其实很容易解决。而且,NoSQL并不是要取代MySQL,事实上Twitter仍然在用MySQL。如果关系型数据库能够承担负荷,那就用好了;如果不行,请考虑NoSQL。 而德国知名博客Code Monkeyism则嘲笑Dziuba看起来并没有用MySQL做过真实项目,因为MySQL如果没有memcache,基本上无法应付网站项目。他认为,NoSQL将使SQL数据库边缘化,而且一个重要理由恰恰是可以节省DBA的开销。 digg的前任首席架构师现在也在创业的Joe Stump说,自己现在的创业项目就是用NoSQL,而且列举了一系列问题挑战SQL阵营。
redis数据类型和应用场景
Redis是当前比较热门的NOSQL系统之一,它是一个开源的使用ANSI c语言编写的key-value存储系统(区别于MySQL的二维表格的形式存储。),Redis数据都是缓存在计算机内存中并且它会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,实现数据的持久化。谈到存储数据,那么必然要涉及到相关的数据类型,redis主要有以下数据类型:
描述:string 是 redis 最基本的类型,你可以理解成与 Memcached 一模一样的类型,一个 key 对应一个 value。value其实不仅是String,也可以是数字。string 类型是二进制安全的。意思是 redis 的 string 可以包含任何数据。比如jpg图片或者序列化的对象。string 类型是 Redis 最基本的数据类型,string 类型的值最大能存储 512MB。
常用命令:get、set、incr、decr、mget等。
应用场景:规key-value缓存应用。常规计数: 点赞数, 粉丝数。
描述: hash 是一个键值(key = value)对集合。Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象。
常用命令:hget,hset,hgetall 等。
应用场景:存储部分变更数据,如商品信息等。
描述:list 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。列表最多可存储 232 - 1 元素 (4294967295, 每个列表可存储40多亿)。
常用命令:lpush(添加左边元素),rpush,lpop(移除左边第一个元素),rpop,lrange(获取列表片段,LRANGE key start stop)等。
应用场景:消息队列,关注列表,粉丝列表等都可以用Redis的list结构来实现。
描述: set是string类型的无序集合。集合是通过hashtable实现的,概念和数学中个的集合基本类似,可以交集,并集,差集等等,set中的元素是没有顺序的。所以添加,删除,查找的复杂度都是O(1)。
常用命令:sadd,spop,smembers,sunion 等。
应用场景:交集,并集,差集(微博中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis还为集合提供了求交集、并集、差集等操作,可以非常方便的实现如共同关注、共同喜好、二度好友等功能,对上面的所有集合操作,你还可以使用不同的命令选择将结果返回给客户端还是存集到一个新的集合中)
描述:zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。不同是可以打分(排序)
常用命令:zadd,zrange,zrem,zcard等
应用场景:排行榜,带权重的消息队列
描述:Bitmaps这个“数据结构”可以实现对位的操作。 把数据结构加上引号主要因为:
Bitmaps本身不是一种数据结构, 实际上它就是字符串 , 但是它可以对字符串的位进行操作。
Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。其实大多数Bitmaps的应用场景可以用其他数据类型来实现,用Bitmaps主要是存储空间占用特别少
常用命令:getbit key offset;setbit key offset value
应用场景:统计用户访问,统计电影某天的的播放量
描述:Redis 在 2.8.9 版本添加了 HyperLogLog 结构。Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定 的、并且是很小的。在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基 数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。这类数据结构的基本大的思路就是使用统计概率上的算法,牺牲数据的精准性来节省内存的占用空间及提升相关操作的性能
常用命令:pfadd, pfcount,pfmerge
应用场景:统计网站的每日UV
描述:GEO功能在Redis3.2版本提供,支持存储地理位置信息用来实现诸如附近位置、摇一摇这类依赖于地理位置信息的功能.geo的数据类型为zset.
常用命令:geoadd,geopos, geodist
应用场景:附近位置、摇一摇
参考列表:
Redis五种数据类型及应用场景
新浪微博「点赞功能」数据库如何设计的?
对于第一个问题,设计一个schema-(messageID,likedCount),记录每条微博的点赞数。messageID是微博的编号,likedCount是该微博的点赞人数。但是这里有两个问题需要解决,第一是并发,第二是数据量。
每条微博都有可能有很多人同时点赞,为了保证点赞人数精确就需要保证likedCount++是原子操作,这个可以由应用程序来实现,也可以用redis的事务来实现(如果redis有事务机制或者自增功能的话),但是我觉得为了性能考虑,也可以不用实现原子操作,具体原因就不展开了。
每天都上亿可能更多的微博内容产生,这样就会有上亿个新的(messageID,likedCount)生成,这样的数据量是比较大的,单机数据库比较难提供高效的服务,所以需要采取sharding的功能(有时候也叫分表分库),可能根据messageID把这些schema分散到十个或者更多的shards上(据说,sina微博有600个节点,如何三个节点组成一个shard,就有200个shards),这样每个shard处理的请求就只有原来的十分之一,从而就能提高服务的性能。
关于点赞人列表的设计,一般来说,可能想到的schema是(messageID,userID),但是这样的设计有一个小问题,就是有些大发的微博可能会得到几十万的点赞,这样就会产生几十万个条数据,这样数据有点多,读取起来可能也慢。所以可以用这样一个schema(messageID,partID,userIDs),让一个messageID对于多个userID,同时比对应太多的userID,所以加入一个新的partID,一个part存1000个userID,这样几十万个点赞,只需要存几百条数据。这样做还有一个好处,用户点击查看点赞人时的,一般都不是完全显示所有点赞人,而是一批一批显示,这样可以一次只读一条数据,就可显示一批点赞用户信息。
本文标题:点赞nosql,点赞达人秀
标题来源:http://pcwzsj.com/article/dsgoigp.html