c语言递归函数执行图,c语言递归流程图
C语言编程用递归函数求5!的流程图
函数执行流程:
创新互联,为您提供成都网站建设、成都网站制作、网站营销推广、网站开发设计,对服务塔吊租赁等多个行业拥有丰富的网站建设及推广经验。创新互联网站建设公司成立于2013年,提供专业网站制作报价服务,我们深知市场的竞争激烈,认真对待每位客户,为客户提供赏心悦目的作品。 与客户共同发展进步,是我们永远的责任!
开始:
fact(5) 函数结束
|
return 5 * fact(4) return 5 * 4* 2 *1
| |
return 4 * fact(3) return 4* 3* 2*1
| |
return 3 * fact(2) return 3* 2*1
| |
return 2 * fact(1) return 2* 1
| |
return 1 函数返回
怎么用递归函数实现这张图(用C语言编写)?顺便教一下运用递归算法的技巧。?
#include iostream
#include algorithm
#include string
#include cstdlib
#include set
#include cmath
#include cstdio
#include cstring
#include vector
#include map
#include stack
#include queue
#include cctype
#define LL long long
using namespace std;
const LL inf = 1e18;
const LL mod = 1e9+7;
int s[10] = {1, 3, 6, 10, 15, 21, 27};
int m;
void f(int n, int k, int cnt) {
if(n == 1) {
return;
}
else if(cnt == 0) {
cnt = m - k - 1;
k = m;
f(cnt + 1, k, cnt);
printf("%d\n", cnt + 1);
}else {
f(n + k, k - 1, cnt - 1);
printf("%d ", n + k);
}
}
int main() {
//1 3 6 10 15 21 27
//1 2 3 4 5 6 7
//s = (1 + n) * n / 2
int n;
while(scanf("%d", n) != EOF) {
int k = lower_bound(s, s + 7, n) - s;
m = k;
f(k + 1, k, k);
printf("%d\n", k + 1);
}
return 0;
}
效果
仓促之间写出,也就这样了
这问题实在是有意思啊,主要是比较忙,我其实还想好好想想,为了财富值直接回答了
请用c++来编译,也就是g++编译器,头文件有的没用,懒得去掉了,你可以输入类似这种格式的数据来试验,不过最大也就是数组里面最大的,别超出。
注:输入数据格式请看代码s数组
写的不太好,不要介意
求采纳,谢谢
c语言 请问大神这个递归函数程序怎样执行的
printf输出:input number:换行
scanf接收4到变量h
printf输出:the step to moving 4 diskes:换行
move(h,'a','b','c');调用move0:n0=4,x0=a,y0=b,z0=c
move0:n==1不成立,move1(n-1,x,z,y);调用move1:n1=3,x1=a,y1=c,z1=b
move1:n==1不成立,move2(n-1,x,z,y);调用move2:n2=2,x2=a,y2=b,z2=c
move2:n==1不成立,move3(n-1,x,z,y);调用move3:n3=1,x3=a,y3=c,z3=b
move3:n==1成立,printf输出x3,z3:[a--b],返回move2,move3结束
move2:printf输出x2,z2:[a--c],调用move3:n3=n2-1=1,x3=y2=b,y3=x2=a,z3=z2=c
move3:n==1成立,printf输出x3,z3:[b--c],返回move2,move3结束
move2:返回move1,move2结束
move1:printf输出x1,z1:[a--b],调用move2:n2=n1-1=2,x2=y1=c,y2=x1=a,z2=z1=b
move2:n==1不成立,move3(n-1,x,z,y);调用move3:n3=1,x3=c,y3=b,z3=a
move3:n==1成立,printf输出x3,z3:[c--a],返回move2,move3结束
...
c语言递归函数
递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1)边界条件:确定递归到何时终止,也称为递归出口。
(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果
汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:
(1)将塔上的n-1个碟子借助塔C先移到塔B上;
(2)把塔A上剩下的一个碟子移到塔C上;
(3)将n-1个碟子从塔B借助塔A移到塔C上。
在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:
(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;
(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;
(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序
三、递归函数的内部执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;
(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;
(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。
上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
网页名称:c语言递归函数执行图,c语言递归流程图
网页地址:http://pcwzsj.com/article/dseospo.html