nosql单个修改,nosql使用
java io 简单实现对数据的增删改查
// 以下是个简单例子 自己可以扩展分别可以作为一方法
创新互联主营兴化网站建设的网络公司,主营网站建设方案,成都APP应用开发,兴化h5小程序制作搭建,兴化网站营销推广欢迎兴化等地区企业咨询
File file = new File("D:/e.txt");
try {
if (!file.exists()) {
file.createNewFile();
}
// 添加
FileOutputStream fileOutputStream = new FileOutputStream(file, true);
fileOutputStream.write("[id=1,userName=管理员,passWord=admin]\r\n"
.getBytes("UTF-8"));// 格式自由定义
fileOutputStream.close();
// 修改 id=1
int id = 1;
String userName = "周述兵";
String passWord = "zsb";
// 用输入流读取数据 也就是查询
FileInputStream fileInputStream = new FileInputStream(file);
byte[] bytes = new byte[fileInputStream.available()];
fileInputStream.read(bytes);
String[] datas = new String(bytes, "UTF-8").split("\r\n");// 根据每天数据间的区别来划分为数组
for (int i = 0; i datas.length; i++) {
System.out.println(datas[i]);
if (datas[i].indexOf("[id=" + id) = 0) {
datas[i] = "[id=" + id + ",userName=" + userName
+ ",passWord=" + passWord + "]";
}
}
fileInputStream.close();
// 用输出流重新写入数据
fileOutputStream = new FileOutputStream(file, false);
String writeData = "";
for (String data : datas) {
writeData += data + "\r\n";
}
fileOutputStream.write(writeData.getBytes("UTF-8"));
fileOutputStream.close();
// 删除和修改有所略同
} catch (Exception e) {
e.printStackTrace();
}
//如果考虑效率的话 我建议不要用 io 因为这最消耗性能了 你可以考虑存入多个文件 分类存入 分类查找 速度稍微好点
最好还是用数据库
如何选择NoSQL数据库
NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的
SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
NoSQL(NoSQL
= Not Only SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数
据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:
并发控制
并
发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保
证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是
一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。
封锁
就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。
封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。
MVCC
Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。
ACID
指
数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久
性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction
processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。
None
一些系统不提供原子性。
镜像
数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。
镜像分为同步和异步。
数据存储
指的是数据的物理特性怎样被存储在数据库中。
磁盘 数据被存储在硬盘驱动器里;
GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;
Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;
RAM随机存储器;
插件 可以添加外部插件;
Amazon S3通过Web服务接口提供存储;
BDB:BDB
全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat
Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功
能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。
实现语言
实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。
实现语言有:C, C++, Erlang, Java, Python
特性
考虑下列哪一个特点对你的数据库是最重要的:
持久性
可用性
一致性
分区容忍性
证书类型
下面这些许可证是一个不同的开放源码许可的形式:
GPL:通用公共许可证
BSD:伯克利软件分发
MPL:Mozilla公共许可证
EPL:Eclipse公共许可证
IDPL:最初的开发者的公共许可证
LGPL:较宽松通用公共许可证
存储类型
存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。
关键字:支持get、put和删除操作
按列存储:相对于传统的按行存储,数据集成容易多了
面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。
怎样操作leveldb数据库,实现增删改查
LevelDB 简介
一、LevelDB入门
LevelDB是Google开源的持久化KV单机数据库,具有
很高的随机写,顺序读/写性能,但是随机读的性能很一般,也就是说,LevelDB很适合应用在查询较少,而写很多的场景。LevelDB应用了LSM
(Log Structured Merge)
策略,lsm_tree对索引变更进行延迟及批量处理,并通过一种类似于归并排序的方式高效地将更新迁移到磁盘,降低索引插入开销,关于LSM,本文在后
面也会简单提及。
根据LevelDB官方网站的描述,LevelDB的特点和限制如下:
特点:
1、key和value都是任意长度的字节数组;
2、entry(即一条K-V记录)默认是按照key的字典顺序存储的,当然开发者也可以重载这个排序函数;
3、提供的基本操作接口:Put()、Delete()、Get()、Batch();
4、支持批量操作以原子操作进行;
5、可以创建数据全景的snapshot(快照),并允许在快照中查找数据;
6、可以通过前向(或后向)迭代器遍历数据(迭代器会隐含的创建一个snapshot);
7、自动使用Snappy压缩数据;
8、可移植性;
限制:
1、非关系型数据模型(NoSQL),不支持sql语句,也不支持索引;
2、一次只允许一个进程访问一个特定的数据库;
3、没有内置的C/S架构,但开发者可以使用LevelDB库自己封装一个server;
LevelDB本身只是一个lib库,在源码目录make编译即可,然后在我们的应用程序里面可以直接include leveldb/include/db.h头文件,该头文件有几个基本的数据库操作接口,下面是一个测试例子:
#include iostream
#include string
#include assert.h
#include "leveldb/db.h"
using namespace std;
int main(void)
{
leveldb::DB *db;
leveldb::Options options;
options.create_if_missing = true;
// open
leveldb::Status status = leveldb::DB::Open(options,"/tmp/testdb", db);
assert(status.ok());
string key = "name";
string value = "chenqi";
// write
status = db-Put(leveldb::WriteOptions(), key, value);
assert(status.ok());
// read
status = db-Get(leveldb::ReadOptions(), key, value);
assert(status.ok());
coutvalueendl;
// delete
status = db-Delete(leveldb::WriteOptions(), key);
assert(status.ok());
status = db-Get(leveldb::ReadOptions(),key, value);
if(!status.ok()) {
cerrkey" "status.ToString()endl;
} else {
coutkey"==="valueendl;
}
// close
delete db;
return 0;
}
上面的例子演示了如何插入、获取、删除一条记录,编译代码:
g++ -o test test.cpp libleveldb.a -lpthread -Iinclude
执行./test后,会在/tmp下面生成一个目录testdb,里面包含若干文件:
------------------------------------------------------------
LevelDB
是google开源的一个key-value存储引擎库,类似于开源的Lucene索引库一样。其他的软件开发者可以利用该库做二次开发,来满足定制需
求。LevelDB采用日志式的写方式来提高写性能,但是牺牲了部分读性能。为了弥补牺牲了的读性能,一些人提议使用SSD作为存储介质。
对于本地化的Key-value存储引擎来说,简单的使用一般都分成三个基本的步骤:(1)打开一个数据库实例;(2)对这个数据库实例进行插入,修改和查询操作;(3)最后在使用完成之后,关闭该数据库。下面将详细讨论该三个步骤:
一、打开一个数据库实例
一个leveldb数据库有一个对应一个文件系统目录的名字。该数据库的所有内容都存储在这个目录下。下面的代码描述了怎样打开一个数据库或者建立一个新的数据库。
#include assert.h
#include "leveldb/db.h"
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
leveldb::Status status = leveldb::DB::Open(options,"/tmp/testdb", db);
assert(status.ok());
如果打开已存在数据库的时候,需要抛出错误。将以下代码插在leveldb::DB::Open方法前面:
options.error_if_exists = true;
二、对数据库的简单读、写操作
LevelDB提供了Put,Delete和Get三个方法对数据库进行修改和查询。例如,下面的代码片段描述了怎样将key1对应的value值,移到key2对应的值。
std::string value;
leveldb::Status s = db-Get(leveldb::ReadOptions(), key1, value);
if(s.ok()) s = db-Put(leveldb::WriteOptions(), key2, value);
if(s.ok()) s = db-Delete(leveldb::WriteOptions(), key1);
三、关闭数据库
在对数据库进行了一系列的操作之后,需要对数据库进行关闭。该操作比较简单:
... open the db as described above...
... do something with db ...
delete db;
上面对levelDB的简单使用做了基本的介绍,接下来就是如何自己写一个完成并且能运行的例子。
1、下载源码 git clone
2、编译源码 cd leveldb make all
3、编写test.cpp
#include assert.h
#include string.h
#include leveldb/db.h
#include iostream
int main(){
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
leveldb::Status status = leveldb::DB::Open(options,"/tmp/testdb", db);
assert(status.ok());
//write key1,value1
std::string key="key";
std::string value = "value";
status = db-Put(leveldb::WriteOptions(), key,value);
assert(status.ok());
status = db-Get(leveldb::ReadOptions(), key, value);
assert(status.ok());
std::coutvaluestd::endl;
std::string key2 = "key2";
//move the value under key to key2
status = db-Put(leveldb::WriteOptions(),key2,value);
assert(status.ok());
status = db-Delete(leveldb::WriteOptions(), key);
assert(status.ok());
status = db-Get(leveldb::ReadOptions(),key2, value);
assert(status.ok());
std::coutkey2"==="valuestd::endl;
status = db-Get(leveldb::ReadOptions(),key, value);
if(!status.ok()) std::cerrkey" "status.ToString()std::endl;
else std::coutkey"==="valuestd::endl;
delete db;
return 0;
}
4、编译链接 g++ -o test test.cpp ../leveldb/libleveldb.a -lpthread -I../leveldb/include
注意libleveldb.a 和leveldb include的路径。
5、运行结果./test:
value
key2===value
key NotFound:
nosql数据库是什么 具有代表性以key-value的形式存储的
什么是NoSQL
大家有没有听说过“NoSQL”呢?近年,这个词极受关注。看到“NoSQL”这个词,大家可能会误以为是“No!SQL”的缩写,并深感愤怒:“SQL怎么会没有必要了呢?”但实际上,它是“Not Only SQL”的缩写。它的意义是:适用关系型数据库的时候就使用关系型数据库,不适用的时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。
为弥补关系型数据库的不足,各种各样的NoSQL数据库应运而生。
为了更好地了解本书所介绍的NoSQL数据库,对关系型数据库的理解是必不可少的。那么,就让我们先来看一看关系型数据库的历史、分类和特征吧。
关系型数据库简史
1969年,埃德加?6?1弗兰克?6?1科德(Edgar Frank Codd)发表了划时代的论文,首次提出了关系数据模型的概念。但可惜的是,刊登论文的《IBM Research Report》只是IBM公司的内部刊物,因此论文反响平平。1970年,他再次在刊物《Communication of the ACM》上发表了题为“A Relational Model of Data for Large Shared Data banks”(大型共享数据库的关系模型)的论文,终于引起了大家的关注。
科德所提出的关系数据模型的概念成为了现今关系型数据库的基础。当时的关系型数据库由于硬件性能低劣、处理速度过慢而迟迟没有得到实际应用。但之后随着硬件性能的提升,加之使用简单、性能优越等优点,关系型数据库得到了广泛的应用。
通用性及高性能
虽然本书是讲解NoSQL数据库的,但有一个重要的大前提,请大家一定不要误解。这个大前提就是“关系型数据库的性能绝对不低,它具有非常好的通用性和非常高的性能”。毫无疑问,对于绝大多数的应用来说它都是最有效的解决方案。
突出的优势
关系型数据库作为应用广泛的通用型数据库,它的突出优势主要有以下几点:
保持数据的一致性(事务处理)
由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)
可以进行JOIN等复杂查询
存在很多实际成果和专业技术信息(成熟的技术)
这其中,能够保持数据的一致性是关系型数据库的最大优势。在需要严格保证数据一致性和处理完整性的情况下,用关系型数据库是肯定没有错的。但是有些情况不需要JOIN,对上述关系型数据库的优点也没有什么特别需要,这时似乎也就没有必要拘泥于关系型数据库了。
关系型数据库的不足
不擅长的处理
就像之前提到的那样,关系型数据库的性能非常高。但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途。具体来说它并不擅长以下处理:
大量数据的写入处理
为有数据更新的表做索引或表结构(schema)变更
字段不固定时应用
对简单查询需要快速返回结果的处理
。。。。。。
NoSQL数据库
为了弥补关系型数据库的不足(特别是最近几年),NoSQL数据库出现了。关系型数据库应用广泛,能进行事务处理和JOIN等复杂处理。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。
易于数据的分散
如前所述,关系型数据库并不擅长大量数据的写入处理。原本关系型数据库就是以JOIN为前提的,就是说,各个数据之间存在关联是关系型数据库得名的主要原因。为了进行JOIN处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散。相反,NoSQL数据库原本就不支持JOIN处理,各个数据都是独立设计的,很容易把数据分散到多个服务器上。由于数据被分散到了多个服务器上,减少了每个服务器上的数据量,即使要进行大量数据的写入操作,处理起来也更加容易。同理,数据的读入操作当然也同样容易。
提升性能和增大规模
下面说一点题外话,如果想要使服务器能够轻松地处理更大量的数据,那么只有两个选择:一是提升性能,二是增大规模。下面我们来整理一下这两者的不同。
首先,提升性能指的就是通过提升现行服务器自身的性能来提高处理能力。这是非常简单的方法,程序方面也不需要进行变更,但需要一些费用。若要购买性能翻倍的服务器,需要花费的资金往往不只是原来的2倍,可能需要多达5到10倍。这种方法虽然简单,但是成本较高。
另一方面,增大规模指的是使用多台廉价的服务器来提高处理能力。它需要对程序进行变更,但由于使用廉价的服务器,可以控制成本。另外,以后只要依葫芦画瓢增加廉价服务器的数量就可以了。
不对大量数据进行处理的话就没有使用的必要吗?
NoSQL数据库基本上来说为了“使大量数据的写入处理更加容易(让增加服务器数量更容易)”而设计的。但如果不是对大量数据进行操作的话,NoSQL数据库的应用就没有意义吗?
答案是否定的。的确,它在处理大量数据方面很有优势。但实际上NoSQL数据库还有各种各样的特点,如果能够恰当地利用这些特点将会是非常有帮助。具体的例子将会在第2章和第3章进行介绍,这些用途将会让你感受到利用NoSQL的好处。
希望顺畅地对数据进行缓存(Cache)处理
希望对数组类型的数据进行高速处理
希望进行全部保存
多样的NoSQL数据库
NoSQL数据库存在着“key-value存储”、“文档型数据库”、“列存储数据库”等各种各样的种类,每种数据库又包含各自的特点。下一节让我们一起来了解一下NoSQL数据库的种类和特点。
NoSQL数据库是什么
NoSQL说起来简单,但实际上到底有多少种呢?我在提笔的时候,到NoSQL的官方网站上确认了一下,竟然已经有122种了。另外官方网站上也介绍了本书没有涉及到的图形数据库和对象数据库等各个类别。不知不觉间,原来已经出现了这么多的NoSQL数据库啊。
本节将为大家介绍具有代表性的NoSQL数据库。
key-value存储
这是最常见的NoSQL数据库,它的数据是以key-value的形式存储的。虽然它的处理速度非常快,但是基本上只能通过key的完全一致查询获取数据。根据数据的保存方式可以分为临时性、永久性和两者兼具三种。
临时性
memcached属于这种类型。所谓临时性就是 “数据有可能丢失”的意思。memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止的时候,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据(旧数据会丢失)。
在内存中保存数据
可以进行非常快速的保存和读取处理
数据有可能丢失
永久性
Tokyo Tyrant、Flare、ROMA等属于这种类型。和临时性相反,所谓永久性就是“数据不会丢失”的意思。这里的key-value存储不像memcached那样在内存中保存数据,而是把数据保存在硬盘上。与memcached在内存中处理数据比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的。但数据不会丢失是它最大的优势。
在硬盘上保存数据
可以进行非常快速的保存和读取处理(但无法与memcached相比)
数据不会丢失
两者兼具
Redis属于这种类型。Redis有些特殊,临时性和永久性兼具,且集合了临时性key-value存储和永久性key-value存储的优点。Redis首先把数据保存到内存中,在满足特定条件(默认是15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的key发生变更)的时候将数据写入到硬盘中。这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性。这种类型的数据库特别适合于处理数组类型的数据。
同时在内存和硬盘上保存数据
可以进行非常快速的保存和读取处理
保存在硬盘上的数据不会消失(可以恢复)
适合于处理数组类型的数据
面向文档的数据库
MongoDB、CouchDB属于这种类型。它们属于NoSQL数据库,但与key-value存储相异。
不定义表结构
面向文档的数据库具有以下特征:即使不定义表结构,也可以像定义了表结构一样使用。关系型数据库在变更表结构时比较费事,而且为了保持一致性还需修改程序。然而NoSQL数据库则可省去这些麻烦(通常程序都是正确的),确实是方便快捷。
可以使用复杂的查询条件
跟key-value存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据。虽然不具备事务处理和JOIN这些关系型数据库所具有的处理能力,但除此以外的其他处理基本上都能实现。这是非常容易使用的NoSQL数据库。
不需要定义表结构
可以利用复杂的查询条件
面向列的数据库
Cassandra、Hbase、HyperTable属于这种类型。由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引人注目。
面向行的数据库和面向列的数据库
普通的关系型数据库都是以行为单位来存储数据的,擅长进行以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被称为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
高扩展性
面向列的数据库具有高扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,利用面向列的数据库的优势,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,应用起来十分困难。
高扩展性(特别是写入处理)
应用十分困难
最近,像Twitter和Facebook这样需要对大量数据进行更新和查询的网络服务不断增加,面向列的数据库的优势对其中一些服务是非常有用的,但是由于这与本书所要介绍的内容关系不大,就不进行详细介绍了。
总结:
NoSQL并不是No-SQL,而是指Not Only SQL。
NoSQL的出现是为了弥补SQL数据库因为事务等机制带来的对海量数据、高并发请求的处理的性能上的欠缺。
NoSQL不是为了替代SQL而出现的,它是一种替补方案,而不是解决方案的首选。
绝大多数的NoSQL产品都是基于大内存和高性能随机读写的(比如具有更高性能的固态硬盘阵列),一般的小型企业在选择NoSQL时一定要慎重!不要为了NoSQL而NoSQL,可能会导致花了冤枉钱又耽搁了项目进程。
NoSQL不是万能的,但在大型项目中,你往往需要它!
什么是NoSQL数据库?
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
高性能 NoSQL
关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:
表结构是强约束的,业务变更时扩充很麻烦。
如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。
全文搜索只能使用 Like 进行整表扫描,性能非常低。
针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分为4类:
Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。
以 list 为例:
LPOP key 是移除并返回队列左边的第一个元素。
如果用关系数据库就比较麻烦了,需要操作:
Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。
最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。
特点:
以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。
文档数据库的主要缺点:
关系数据库是按行来存储的,列式数据库是按照列来存储数据。
按行存储的优势:
在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。
而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。
除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。
列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。
一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。
关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:
假设有一个交友网站,信息表如下:
需要匹配性别、地点、语言列。
需要匹配性别、地点、爱好列。
实际搜索中,各种排列组合非常多,关系数据库很难支持。
全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:
所以特别适合根据关键词来查询文档内容。
上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。
分享名称:nosql单个修改,nosql使用
文章路径:http://pcwzsj.com/article/dsehicd.html