Python中常用的数学建模Matplotlib-创新互联
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联建站一直通过网站建设和网站营销帮助企业获得更多客户资源。 以"深度挖掘,量身打造,注重实效"的一站式服务,以成都网站设计、网站制作、外贸营销网站建设、移动互联产品、成都全网营销推广服务为核心业务。10多年网站制作的经验,使用新网站建设技术,全新开发出的标准网站,不但价格便宜而且实用、灵活,特别适合中小公司网站制作。网站管理系统简单易用,维护方便,您可以完全操作网站资料,是中小公司快速网站建设的选择。这篇文章运用简单易懂的例子给大家介绍Python中常用的数学建模Matplotlib,代码非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
三剑客之Matplotlib
matplotlib 是python最著名的绘图库,它提供了一整套和Matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。matplotlib 可以绘制多种形式的图形包括普通的线图,直方图,饼图,散点图以及误差线图等;可以比较方便的定制图形的各种属性比如图线的类型,颜色,粗细,字体的大小等;它能够很好地支持一部分 TeX 排版命令,可以比较美观地显示图形中的数学公式。
更多Matplotlib的相关知识,可以参考这篇文章:《利用Python的Matplotlib库进行数据可视化》
3.1 pylot介绍
Matplotlib 包含了几十个不同的模块, 如 matlab、mathtext、finance、dates 等,而 pylot 则是我们最常用的绘图模块,这也是本文介绍的重点。
3.1.1 中文显示问题的解决方案
有很多方法可以解决此问题,但下面的方法恐怕是最简单的解决方案了(我只在windows平台上测试过,其他平台请看官自测)。如果想了解更多,也可以参考我N年前的一片博文:matplotlib显示中文的解决方案
>>> import matplotlib.pyplot as plt >>> plt.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 >>> plt.rcParams['axes.unicode_minus'] = False # 解决保存图像时'-'显示为方块的问题
3.1.2 绘制最简单的图形
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> x = np.arange(0, 2*np.pi, 0.01) >>> y = np.sin(x) >>> plt.plot(x, y) >>> plt.show()
3.1.3 设置标题、坐标轴名称、坐标轴范围
如果你在python的shell中运行下面的代码,而shell的默认编码又不是utf-8的话,中文可能仍然会显示为乱码。你可以尝试着把 u’正弦曲线’ 写成 ‘正弦曲线’.decode(‘gbk’)或者’正弦曲线’.decode(‘utf-8’)
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from pylab import mpl >>> mpl.rcParams['font.sans-serif'] = ['FangSong'] >>> mpl.rcParams['axes.unicode_minus'] = False >>> x = np.arange(0, 2*np.pi, 0.01) >>> y = np.sin(x) >>> plt.plot(x, y) >>> plt.title(u'正弦曲线', fontdict={'size':20}) # 设置标题 >>> plt.xlabel(u'弧度', fontdict={'size':16}) # 显示横轴名称 >>> plt.ylabel(u'正弦值', fontdict={'size':16}) # 显示纵轴名称 >>> plt.axis([-0.1*np.pi, 2.1*np.pi, -1.1, 1.1]) # 设置坐标轴范围 >>> plt.axis('equal') # xy轴等比例保持 >>> plt.show()
3.1.4 设置点和线的样式、宽度、颜色
plt.plot函数的调用形式如下:
plot(x, y, color='green', linestyle='dashed', linewidth=1, marker='o', markerfacecolor='blue', markersize=6) plot(x, y, c='g', ls='--', lw=1, marker='o', mfc='blue', ms=6)
1、color指定线的颜色,可简写为“c”。颜色的选项为:
·蓝色: ‘b’ (blue)
·绿色: ‘g’ (green)
·红色: ‘r’ (red)
·墨绿: ‘c’ (cyan)
·洋红: ‘m’ (magenta)
·黄色: ‘y’ (yellow)
·黑色: ‘k’ (black)
·白色: ‘w’ (white)
·灰度表示: e.g. 0.75 ([0,1]内任意浮点数)
·RGB表示法: e.g. ‘#2F4F4F’ 或 (0.18, 0.31, 0.31)
1、linestyle指定线型,可简写为“ls”。线型的选项为:
·实线: ‘-’ (solid line)
·虚线: ‘–’ (dashed line)
·虚点线: ‘-.’ (dash-dot line)
·点线: ‘:’ (dotted line)
·无: '‘或’ ‘或’None’
1、linewidth指定线宽,可简写为“lw”。
2、marker描述数据点的形状
·点线: ‘.’
·点线: ‘o’
·加号: '+
·叉号: ‘x’
·上三角: ‘^’
·上三角: ‘v’
1、markerfacecolor指定数据点标记的表面颜色,可 简写为“ mfc”。
2、markersize指定数据点标记的大小,可 简写为“ ms”。
3.1.5 文本标注和图例
我们分别使用不同的线型、颜色来绘制以10、e、2为基的一组幂函数曲线,演示文本标注和图例的使用。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from pylab import mpl >>> mpl.rcParams['font.sans-serif'] = ['FangSong'] >>> mpl.rcParams['axes.unicode_minus'] = False >>> x = np.linspace(-4, 4, 200) >>> f1 = np.power(10, x) >>> f2 = np.power(np.e, x) >>> f3 = np.power(2, x) >>> plt.plot(x, f1, 'r', ls='-', linewidth=2, label='$10^x$') >>> plt.plot(x, f2, 'b', ls='--', linewidth=2, label='$e^x$') >>> plt.plot(x, f3, 'g', ls=':', linewidth=2, label='$2^x$') >>> plt.axis([-4, 4, -0.5, 8]) >>> plt.text(1, 7.5, r'$10^x$', fontsize=16) >>> plt.text(2.2, 7.5, r'$e^x$', fontsize=16) >>> plt.text(3.2, 7.5, r'$2^x$', fontsize=16) >>> plt.title('幂函数曲线', fontsize=16) >>> plt.legend(loc='upper left') >>> plt.show()
在绘制图例时,loc用于指定图例的位置,可用的选项有:
·best
·upper right
·upper left
·lower left
·lower right
3.2 绘制多轴图
在介绍如何将多幅子图绘制在同一画板的同时,顺便演示如何绘制直线和矩形。我们可以使用subplot函数快速绘制有多个轴的图表。subplot函数的调用形式如下:
subplot(numRows, numCols, plotNum)
subplot将整个绘图区域等分为numRows行 * numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。
>>> import matplotlib.pyplot as plt >>> plt.subplot(221) # 两行两列的第1个位置 >>> plt.axis([-1, 2, -1, 2]) >>> plt.axhline(y=0.5, color='b') >>> plt.axhline(y=0.5, xmin=0.25, xmax=0.75, color='r') >>> plt.subplot(222) # 两行两列的第2个位置 >>> plt.axis([-1, 2, -1, 2]) >>> plt.axvline(x=0, ymin=0, linewidth=4, color='r') >>> plt.axvline(x=1.0, ymin=-0.5, ymax=0.5, linewidth=4, color='g') >>> plt.subplot(212) # 两行一列的第2个位置 >>> plt.axis([-1, 2, -1, 2]) >>> plt.axvspan(1.25, 1.55, facecolor='g', alpha=0.5) >>> plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) >>> plt.show()
3.3 常用绘图类型
3.3.1 直方图
用numpy随机生成一个符合正态分布的数据集,统计分段区域内数据的个数。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.random.normal(5.0, 3.0, 1000) >>> plt.hist(data) >>> bins = np.arange(-5, 16, 1) >>> plt.hist(data, bins) # 使用自定义的分段区域 >>> plt.show()
3.3.2 散点图
使用plot()绘图时,如果指定样式参数为仅绘制数据点(linestyle=‘None’),那么所绘制的就是一幅散列图。这种方法所绘制的点无法单独指定数据点的颜色和大小,而使用scatter()绘制散列图就可以指定每个点的颜色和大小。
plt.scatter函数的调用形式如下:
scatter(x,y,s=None,c=None,marker=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,verts=None, edgecolors=None,hold=None,data=None,**kwargs)
scatter()的前两个参数是数组,分别指定每个点的X轴和Y轴的坐标。s参数指定点的大 小,值和点的面积成正比,它可以是一个数,指定所有点的大小,也可以是数组,分别对每个点指定大小。c参数指定每个点的颜色,可以是数值或数组。这里使用一维数组为每个点指定了一个数值。通过颜色映射表,每个数值都会与一个颜色相对应。默认的颜色映射表中蓝色与最小值对应,红色与大值对应。当c参数是形状为(N,3)或(N,4)的二维数组时,则直接表示每个点的RGB颜色。marker参数设置点的形状,可以是个表示形状的字符串,也可以是表示多边形的两个元素的元组,第一个元素表示多边形的边数,第二个元素表示多边形的样式,取值范围为0、1、2、3。0表示多边形,1表示星形,2表示放射形,3表示忽略边数而显示为圆形。alpha参数设置点的透明度。facecolors参数为“none”时,表示散列点没有填充色。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> x = np.random.rand(50) >>> y = np.random.rand(50) >>> area = np.pi * (15 * np.random.rand(50))**2 >>> color = 2 * np.pi * np.random.rand(50) >>> plt.scatter(x, y, s=area, c=color, alpha=0.5, cmap=plt.cm.hsv) >>> plt.show()
3.3.3 梯形图、柱状图、填充图
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> n = np.array([0,1,2,3,4,5]) >>> x = np.linspace(-0.75, 1., 100) >>> plt.subplot(131) >>> plt.step(n, n**2, lw=2) >>> plt.subplot(132) >>> plt.bar(n, n**2, align="center", width=0.5, alpha=0.5) >>> plt.subplot(133) >>> plt.fill_between(x, x**2, x**3, color="green", alpha=0.5) >>> plt.show()
3.3.4 对数坐标
plot()所绘制图表的X-Y轴坐标都是算术坐标。绘制对数坐标图的函数有三个:semilogx()、semilogy()和loglog(),它们分别绘制X轴为对数坐标、Y轴为对数坐标以及两个轴都为对数坐标时的图表。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 3, 100) >>> y = np.power(2, np.power(2,x)) >>> plt.subplot(121) >>> plt.semilogy(x, y , '-r') >>> plt.subplot(122) >>> plt.plot(x,y, '--g') >>> plt.show()
3.3.5极坐标绘图
极坐标系是和笛卡尔(X-Y)坐标系完全不同的坐标系,极坐标系中的点由一个夹角和一段相对中心点的距离来表示。polar(theta, r, **kwargs)可以直接创建极坐标子图并在其中绘制曲线。也可以使用程序中调用subplot()创建子图时通过设 polar参数为True,创建一个极坐标子图,然后调用plot()在极坐标子图中绘图。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> theta = np.arange(0, 2*np.pi, 0.02) >>> plt.polar(theta, 1.4*np.cos(5*theta), "--", linewidth=2) >>> plt.polar(theta, 1.8*np.cos(4*theta), linewidth=2) >>> plt.rgrids(np.arange(0.5, 2, 0.5), angle=45) >>> plt.thetagrids([0, 45])thetagridlabel objects>) >>> plt.show() >>>
3.4 2D绘图
3.4.1 等值线图
所谓等值线,是指由函数值相等的各点连成的平滑曲线。等值线可以直观地表示二元函数值的变化趋势,例如等值线密集的地方表示函数值在此处的变化较大。matplotlib中可以使用contour()和contourf()描绘等值线,它们的区别是:contourf()所得到的是带填充效果的等值线。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> y, x = np.ogrid[-2:2:200j, -3:3:300j] >>> z = x * np.exp( - x**2 - y**2) >>> extent = [np.min(x), np.max(x), np.min(y), np.max(y)] >>> plt.subplot(121) >>> cs = plt.contour(z, 10, extent=extent) >>> plt.clabel(cs) >>> plt.subplot(122) >>> plt.contourf(x.reshape(-1), y.reshape(-1), z, 20) >>> plt.show()
为了更淸楚地区分X轴和Y轴,这里让它们的取值范围和等分次数均不相同.这样得 到的数组z的形状为(200, 300),它的第0轴对应Y轴、第1轴对应X轴。
调用contour()绘制数组z的等值线图,第二个参数为10,表示将整个函数的取值范围等分为10个区间,即显示的等值线图中将有9条等值线。可以使用extent参数指定等值线图的X轴和Y轴的数据范围。
contour()所返回的是一个QuadContourSet对象, 将它传递给clabel(),为其中的等值线标上对应的值。
调用contourf(),绘制将取值范围等分为20份、带填充效果的等值线图。这里演示了另外一种设置X、Y轴取值范围的方法,它的前两个参数分别是计算数组z时所使用的X轴和Y轴上的取样点,这两个数组必须是一维的。
3.4.2 二维数据的平面色彩显示
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> data=np.clip(np.random.randn(5,5),-1,1) >>> plt.subplot(221) >>> plt.imshow(data) >>> plt.subplot(222) >>> plt.imshow(data,cmap=plt.cm.cool) >>> plt.subplot(223) >>> plt.imshow(data,cmap=plt.cm.hot) >>> plt.colorbar() >>> plt.subplot(224) >>> im = plt.imshow(data,cmap=plt.cm.winter) >>> plt.colorbar(im, cmap=plt.cm.winter, ticks=[-1,0,1]) >>> plt.show()
3.5 3D绘图
虽然matplotlib主要专注于绘图,并且主要是二维的图形,但是它也有一些不同的扩展,能让我们在地理图上绘图,让我们把Excel和3D图表结合起来。在matplotlib的世界里,这些扩展叫做工具包(toolkits)。工具包是一些关注在某个话题(如3D绘图)的特定函数的集合。
比较流行的工具包有Basemap、GTK 工具、Excel工具、Natgrid、AxesGrid和mplot3d。
mpl_toolkits.mplot3工具包提供了一些基本的3D绘图功能,其支持的图表类型包括散点图(scatter)、曲面图(surf)、线图(line)和网格图(mesh)。虽然mplot3d不是一个最好的3D图形绘制库,但是它是伴随着matplotlib产生的,因此我们对其接口已经很熟悉了。
下面是一个使用plot_surface绘制3d曲面图的例子。
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> import mpl_toolkits.mplot3d >>> x, y = np.mgrid[-2:2:50j,-2:2:50j] >>> z = x*np.exp(-x**2-y**2) >>> ax = plt.subplot(111,projection='3d') >>> ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8) >>> ax.set_xlabel('x') >>> ax.set_ylabel('y') >>> ax.set_zlabel('z') >>> plt.show()
关于Python中常用的数学建模Matplotlib就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
分享标题:Python中常用的数学建模Matplotlib-创新互联
文章路径:http://pcwzsj.com/article/dpccsh.html