python怎么函数作图 python怎么绘制函数图像
python函数图的绘制
pre
站在用户的角度思考问题,与客户深入沟通,找到玉龙网站设计与玉龙网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站制作、成都网站制作、企业官网、英文网站、手机端网站、网站推广、域名注册、网站空间、企业邮箱。业务覆盖玉龙地区。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
python两个函数图像怎么分开画而且加表格
一、函数说明
在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
81036331d721706ae12808beb99b9574.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()
不能直接写出函数的表达式 怎么在python里画函数图象呢?
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
当前名称:python怎么函数作图 python怎么绘制函数图像
当前网址:http://pcwzsj.com/article/dopgego.html