java实时消息加密代码 java通信加密
如何用java语言对即时通讯软件进行加密
一、Java软件加密基本思路
十余年的石家庄网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。网络营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整石家庄建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“石家庄网站设计”,“石家庄网站推广”以来,每个客户项目都认真落实执行。
对于应用软件的保护笔者从两个方面进行考虑,第一是阻止盗版使用软件,第二是阻止竞争对手对软件反编译,即阻止对软件的逆向工程。
1、阻止盗版
在软件运行时对自身存在的合法性进行判断,如果认为自身的存在和运行是被授权的、合法的,就运行;否则终止运行。这样即使软件可以被随意复制,只要盗版用户没有相应的授权信息就无法使用软件。
2、阻止反编译
对编译产生的Class文件加密处理,并在运行时进行解密,解密者无法对软件进行反编译。
二、Java软件加密的总体流程
为了保护用Java语言开发的软件,我们设计并实现了一个实用、高强度的加密算法。以下称需要保护的Java软件为“受保护程序”,称对“受保护程序”进行加密保护的软件为“加密程序”。对软件加密保护的流程如图1所示。
三、加密算法分析设计
1、用户信息提取器设计
为了防止用户发布序列号而导致“一次发行,到处都是”的盗版问题,提取用户机器中硬件相关的、具有唯一性的信息——用户计算机的硬盘分区C的序列号,并要求用户将此信息与用户名一起返回,之后用“序列号生成器”根据用户返回信息生成一个唯一合法的软件注册序列号发回用户,用户即可使用此号码注册使用软件。
这个信息提取器使用Winclows 32汇编以一个独立的小程序方式实现,程序代码如图2所示。
2、序列号生成器与序列号合法性判断函数的设计
序列号生成器与序列号合法性判断函数中运用RSA加密算法。在序列号生成器中是使用私钥将用户返回的信息(硬盘序列号,用户名)进行加密得到相应的注册序列号;在序列号合法性判断函数中使用私钥将用户输入的注册序列号解密,再与(硬盘序列号,用户名)进行比较,一致则调用程序装载器将程序其他部分解密装入内存,初始化删环境并运行程序主体;否则退出。
RSA加密算法的实现需要使用大数运算库,我们使用MIRACL大数库来实现RSA计算,序列号生成器的主要代码如下:
char szlnputString[]=”机器码和用户名组成的字符串”;
char szSerial[256]=[0];//用于存放生成的注册码
bign,d,c,m; //MIRACL中的大数类型
mip→IBASE=16; //以16进制模式
n= mlrvar(0); //初始化大数
d= mirvar(0);
c= mirvar(0); //C存放输入的字符串大数
m= mlrva(o);
bytes to big( len, szlnputString,c);
//将输入字符串转换成大数形式并存入变量c中
cinstr(n,”以字符串形成表示的模数”);//初始化模数
cinstr(d,”以字符串形成表示的公钥”)://初始化公钥
powmod(c,d,n,m); //计算m=cdmod n
cotstr(m,szSerial);//m的16进制字符串即为注册码
序列号合法性检测函数的主要代码如下:
char szlnputStringL]=”机器码和用户名组成的字符串”;
char szSerial[ 256]=”用户输入的序列号”
bign,e,c,m; //MIRACL中的大数类型
mip→IBASE=16; //以16进制模式
cinstr(m,szSerial); //将序列号的16进制转成大数形式
cinstr(n,”模数n的字符串形式”);//初始化模数n
cinstr(e,”字符串形式的公钥”);//初始化公钥
if compare(m,n)==-1) //mn时才进行解密
{
powmod(m,e,n,c);//计算m=me mod n
big_to _bytes(0,c,szSerial,0); //转为字符串
return lstrcmp( szlnputString,szSerial);
}
3、强耦合关系的设计
如果在序列号合法性检测函数中简单地使用图3所示流程:
解密者可以使用以下几种手段进行攻击:
(1)修改“判断合法性子函数”的返回指令,让它永远返回正确值,这样可以使用任意的序列号,安装/使用软件。
(2)修改判断后的跳转指令,使程序永远跳到正确的分支运行,效果和上一种一样。
(3)在“判断合法性子函数”之前执行一条跳转指令,绕过判断,直接跳转到“正常执行”分支运行,这样可以不用输入序列号安装/使用软件。
为阻止以上攻击手段,笔者在程序中增加了“序列号合法性检测函数”与程序其他部分“强耦合”(即增强其与程序其他部分的关联度,成为程序整体密不可分的一部分,一旦被修改程序将无法正常工作)的要求(见图1),并且设置一个“完整性检测函数”用于判断相关的代码是否被修改过。当然,基于同样的原因,“完整性检测函数”也必须与程序其他部分存在“强耦合”关系。
强耦合关系通过以下方式建立:
在程序其他部分的函数(例如函数A)中随机的访问需要强耦合的“序列号合法性检测函数”和“完整性检测函数”,在调用时随机的选择使用一个错误的序列号或是用户输入的序列号,并根据返回结果选择执行A中正常的功能代码还是错误退出的功能代码,流程如图4所示。
经过这种改进,如果破解者通过修改代码的方式破解将因“完整性检测”失败导致程序退出;如果使用SMC等技术绕过“序列号合法性判断函数”而直接跳至序列号正确时的执行入口,在后续的运行中,将因为随机的耦合调用失败导致程序退出。破解者要破解软件将不得不跟踪所有进行了耦合调用的函数,这显然是一个艰巨的任务。
4、完整性检测函数的设计
我们使用CRC算法算出需进行完整性检测的文件的校验码,并用RSA加密算法的公钥(不同于序列号合法性检测中的公钥/私钥对)将其加密存放在特定的文件中,在检测时先用CRC算法重新生成需进行完
整性检测的文件的校验码,并用私钥将保存的校验码解密,两者相比较,相等则正常运行;否则退出。
5、程序加载器的设计
与编译成机器码执行的程序不同,Java程序只能由Java虚拟机解释执行,因此程序加载器的工作包括:初始化Java虚拟机;在内存中解密当前要运行的class文件;使解密后的c:lass文件在虚拟机中运行,在
需要时解密另一个class文件。图5是用于初始化JVM的代码:
以上介绍了我们设计的针对Java软件的加密保护方法,其中综合运用了多种加密技术,抗破解强度高;使用纯软件保护技术,成本低。经笔者在Windows系列平台上进行测试,运行稳定,效果良好。
在研宄开发过程中,我们还总结出加密保护软件的一些经验:
1、对关键代码和数据要静态加密,再动态解密执行;要结合具体的工作平台使用反跟踪/调试技术;
2、要充分利用系统的功能,如在Windows下使用DLL文件或驱动程序形式能得到最大的丰又限,可以充分利用系统具有的各种功能;
3、如果可能应该将关键代码存放在不可禚复制的地方;
4、序列号要与机器码等用户信息相关以阻止盐复布序列号;
5、加密流程的合理性比加密算法本身的强度更重要。
java加密解密代码
package com.cube.limail.util;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;/**
* 加密解密类
*/
public class Eryptogram
{
private static String Algorithm ="DES";
private String key="CB7A92E3D3491964";
//定义 加密算法,可用 DES,DESede,Blowfish
static boolean debug = false ;
/**
* 构造子注解.
*/
public Eryptogram ()
{
} /**
* 生成密钥
* @return byte[] 返回生成的密钥
* @throws exception 扔出异常.
*/
public static byte [] getSecretKey () throws Exception
{
KeyGenerator keygen = KeyGenerator.getInstance (Algorithm );
SecretKey deskey = keygen.generateKey ();
System.out.println ("生成密钥:"+bytesToHexString (deskey.getEncoded ()));
if (debug ) System.out.println ("生成密钥:"+bytesToHexString (deskey.getEncoded ()));
return deskey.getEncoded ();
} /**
* 将指定的数据根据提供的密钥进行加密
* @param input 需要加密的数据
* @param key 密钥
* @return byte[] 加密后的数据
* @throws Exception
*/
public static byte [] encryptData (byte [] input ,byte [] key ) throws Exception
{
SecretKey deskey = new javax.crypto.spec.SecretKeySpec (key ,Algorithm );
if (debug )
{
System.out.println ("加密前的二进串:"+byte2hex (input ));
System.out.println ("加密前的字符串:"+new String (input ));
} Cipher c1 = Cipher.getInstance (Algorithm );
c1.init (Cipher.ENCRYPT_MODE ,deskey );
byte [] cipherByte =c1.doFinal (input );
if (debug ) System.out.println ("加密后的二进串:"+byte2hex (cipherByte ));
return cipherByte ;
} /**
* 将给定的已加密的数据通过指定的密钥进行解密
* @param input 待解密的数据
* @param key 密钥
* @return byte[] 解密后的数据
* @throws Exception
*/
public static byte [] decryptData (byte [] input ,byte [] key ) throws Exception
{
SecretKey deskey = new javax.crypto.spec.SecretKeySpec (key ,Algorithm );
if (debug ) System.out.println ("解密前的信息:"+byte2hex (input ));
Cipher c1 = Cipher.getInstance (Algorithm );
c1.init (Cipher.DECRYPT_MODE ,deskey );
byte [] clearByte =c1.doFinal (input );
if (debug )
{
System.out.println ("解密后的二进串:"+byte2hex (clearByte ));
System.out.println ("解密后的字符串:"+(new String (clearByte )));
} return clearByte ;
} /**
* 字节码转换成16进制字符串
* @param byte[] b 输入要转换的字节码
* @return String 返回转换后的16进制字符串
*/
public static String byte2hex (byte [] b )
{
String hs ="";
String stmp ="";
for (int n =0 ;n b.length ;n ++)
{
stmp =(java.lang.Integer.toHexString (b [n ] 0XFF ));
if (stmp.length ()==1 ) hs =hs +"0"+stmp ;
else hs =hs +stmp ;
if (n b.length -1 ) hs =hs +":";
} return hs.toUpperCase ();
}
/**
* 字符串转成字节数组.
* @param hex 要转化的字符串.
* @return byte[] 返回转化后的字符串.
*/
public static byte[] hexStringToByte(String hex) {
int len = (hex.length() / 2);
byte[] result = new byte[len];
char[] achar = hex.toCharArray();
for (int i = 0; i len; i++) {
int pos = i * 2;
result[i] = (byte) (toByte(achar[pos]) 4 | toByte(achar[pos + 1]));
}
return result;
}
private static byte toByte(char c) {
byte b = (byte) "0123456789ABCDEF".indexOf(c);
return b;
}
/**
* 字节数组转成字符串.
* @param String 要转化的字符串.
* @return 返回转化后的字节数组.
*/
public static final String bytesToHexString(byte[] bArray) {
StringBuffer sb = new StringBuffer(bArray.length);
String sTemp;
for (int i = 0; i bArray.length; i++) {
sTemp = Integer.toHexString(0xFF bArray[i]);
if (sTemp.length() 2)
sb.append(0);
sb.append(sTemp.toUpperCase());
}
return sb.toString();
}
/**
* 从数据库中获取密钥.
* @param deptid 企业id.
* @return 要返回的字节数组.
* @throws Exception 可能抛出的异常.
*/
public static byte[] getSecretKey(long deptid) throws Exception {
byte[] key=null;
String value=null;
//CommDao dao=new CommDao();
// List list=dao.getRecordList("from Key k where k.deptid="+deptid);
//if(list.size()0){
//value=((com.csc.sale.bean.Key)list.get(0)).getKey();
value = "CB7A92E3D3491964";
key=hexStringToByte(value);
//}
if (debug)
System.out.println("密钥:" + value);
return key;
}
public String encryptData2(String data) {
String en = null;
try {
byte[] key=hexStringToByte(this.key);
en = bytesToHexString(encryptData(data.getBytes(),key));
} catch (Exception e) {
e.printStackTrace();
}
return en;
}
public String decryptData2(String data) {
String de = null;
try {
byte[] key=hexStringToByte(this.key);
de = new String(decryptData(hexStringToByte(data),key));
} catch (Exception e) {
e.printStackTrace();
}
return de;
}
} 加密使用: byte[] key=Eryptogram.getSecretKey(deptid); //获得钥匙(字节数组)
byte[] tmp=Eryptogram.encryptData(password.getBytes(), key); //传入密码和钥匙,获得加密后的字节数组的密码
password=Eryptogram.bytesToHexString(tmp); //将字节数组转化为字符串,获得加密后的字符串密码解密与之差不多
求java加密源代码(MD5,base64)
import java.security.*;
import javax.crypto.*;
/**
* 本例解释如何利用DES私钥加密算法加解密
*
* @author Devon
* @version 1.0 04/03/10
*/
public class SingleKeyExample {
public static void main(String[] args) {
try {
String algorithm = "DES"; //定义加密算法,可用 DES,DESede,Blowfish
String message = "Hello World. 这是待加密的信息";
// 生成个DES密钥
KeyGenerator keyGenerator = KeyGenerator.getInstance(algorithm);
keyGenerator.init(56); //选择DES算法,密钥长度必须为56位
Key key = keyGenerator.generateKey(); //生成密钥
// 生成Cipher对象
Cipher cipher = Cipher.getInstance("DES");
//用密钥加密明文(message),生成密文(cipherText)
cipher.init(Cipher.ENCRYPT_MODE, key); //操作模式为加密(Cipher.ENCRYPT_MODE),key为密钥
byte[] cipherText = cipher.doFinal(message.getBytes()); //得到加密后的字节数组
System.out.println("加密后的信息: " + new String(cipherText));
//用密钥加密明文(plainText),生成密文(cipherByte)
cipher.init(Cipher.DECRYPT_MODE, key); //操作模式为解密,key为密钥
byte[] sourceText = cipher.doFinal(cipherText); //获得解密后字节数组
System.out.println("解密后的信息: " + new String(sourceText));
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
/**
* @author Devon
*/
import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
public class PairKeyExample {
public static void main(String argv[]) {
try {
String algorithm = "RSA"; //定义加密算法,可用 DES,DESede,Blowfish
String message = "张三,你好,我是李四";
//产生张三的密钥对(keyPairZhang)
KeyPairGenerator keyGeneratorZhang =
KeyPairGenerator.getInstance(algorithm); //指定采用的算法
keyGeneratorZhang.initialize(1024); //指定密钥长度为1024位
KeyPair keyPairZhang = keyGeneratorZhang.generateKeyPair(); //产生密钥对
System.out.println("生成张三的公钥对");
// 张三生成公钥(publicKeyZhang)并发送给李四,这里发送的是公钥的数组字节
byte[] publicKeyZhangEncode = keyPairZhang.getPublic().getEncoded();
//通过网络或磁盘等方式,把公钥编码传送给李四
//李四接收到张三编码后的公钥,将其解码
KeyFactory keyFacoryLi = KeyFactory.getInstance(algorithm); //得到KeyFactory对象
X509EncodedKeySpec x509KeySpec =
new X509EncodedKeySpec(publicKeyZhangEncode); //公钥采用X.509编码
PublicKey publicKeyZhang = keyFacoryLi.generatePublic(x509KeySpec); //将公钥的KeySpec对象转换为公钥
System.out.println("李四成功解码,得到张三的公钥");
//李四用张三的公钥加密信息,并发送给李四
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); //得到Cipher对象
cipher.init(Cipher.ENCRYPT_MODE, publicKeyZhang); //用张三的公钥初始化Cipher对象
byte[] cipherMessage = cipher.doFinal(message.getBytes()); //得到加密信息
System.out.println("加密后信息:" + new String(cipherMessage));
System.out.println("加密完成,发送给李四...");
//张三用自己的私钥解密从李四处收到的信息
cipher.init(Cipher.DECRYPT_MODE, keyPairZhang.getPrivate()); //张三用其私钥初始化Cipher对象
byte[] originalMessage = cipher.doFinal(cipherMessage); //得到解密后信息
System.out.println("张三收到信息,解密后为:" + new String(originalMessage));
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
当前文章:java实时消息加密代码 java通信加密
网站网址:http://pcwzsj.com/article/dopepsd.html