python特殊函数教程 python入门函数
Python中的几种特殊数据类型小结
下面介绍了Python中的6种特殊数据类型:
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、网页空间、营销软件、网站建设、邓州网站维护、网站推广。
1.list:列表
是一种有序的数据集合,在列表数据结构中的类型并不唯一
定义形式:L=['Micha',100,True]
输出整个列表的时候显示为['Micha',100,True]
输出单个的数值则为:Micha
a.访问,直接使用L[0]表示第一个元素或者使用L[-1]表示最后一个数据,以此类推,但是注意访问不能越界(访问的序号不能超过元素的总数)。
b.添加新元素:使用L.append(100)直接将100加入列表末尾,或者使用L.insert(0,'paul')将paul插入任意位置。
c.删除元素:L.pop()删除最后一个元素,或者L.pop(2)删除第2个位置的元素。
d.替换元素:直接赋值就可以了L[2]=100
2.tuple:元组
是一种有序的列表,但是其一旦创立完毕就不能够更改,即不能插入,删除里面的元素,访问的方式跟List结构一致。
a.t=()其打印后输出的形式是()
若t中的数据为一个数字则需要在后面加逗号,以区分普通数字,如t=(1,),打印出(1,)而非1,多元素的话则没有这个要求。
b.可以在不变的tuple中加入可变的List如t=(‘a’,'b',['A','B'])
3.dict:字典
d = {
'Adam': 95,
'Lisa': 85,
'Bart': 59
}
len()函数可以计算任意集合的大小
其中可以简单地使用d[key]的形式来查找对应的 value,这和 list很像,不同之处是,list必须使用索引返回对应的元素,而dict使用key,当key不存在的时候,使用该key可能出现错误,因此:要避免 KeyError 发生,有两个办法:
一是先判断一下 key 是否存在,用 in 操作符:
if'Paul' in d:
print d['Paul']
如果 'Paul' 不存在,if语句判断为False,自然不会执行print d['Paul'],从而避免了错误。
二是使用dict本身提供的一个 get方法,在Key不存在的时候,返回None:
print d.get('Bart')
59
a.dict中的key不能重复,且dict中的存储的对应值没有顺序,打印出的东西可能是无序的
b.dict的更新:使用d[‘paul']=72求解
c.dict遍历:
d = {'Adam': 95, 'Lisa': 85, 'Bart': 59 }
for key in d:
... print key
遍历只能获得key的值,需要通过key值获得对应的value
4.set:集合
无序但是所有元素唯一,不重复
a.定义:s = set(['A', 'B', 'C']),查看 set的内容:
print s
set(['A','C', 'B'])
可以用in来判断是否存在于集合中
b.遍历
s =set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
for xin s:
print x[0]+':',x[1]
c.添加元素到集合中
s.add(4)
d.删除元素
s.remove(4)若该元素不在集合中将会报错
5.Unicode编码
Python在后来添加了对Unicode的支持,以Unicode表示的字符串用u'...'表示,比如:
printu'中文'
注意: 不加 u,中文就不能正常显示中文。
a.转义形式: u'中文\n日文\n韩文'
b.输出多行:
u'''第一行
第二行'''
c.raw+多行的形式:
ur'''Python的Unicode字符串支持"中文",
"日文",
"韩文"等多种语言'''
如果中文字符串在Python环境下遇到 UnicodeDecodeError,这是因为.py文件保存的格式有问题。可以在第一行添加注释
# -*-coding: utf-8 -*-
目的是告诉Python解释器,用UTF-8编码读取源代码。然后用Notepad++另存为, 并选择UTF-8格式保存。
6.raw的作用
如果一个字符串包含很多需要转义的字符,对每一个字符都进行转义会很麻烦。为了避免这种情况,我们可以在字符串前面加个前缀 r,表示这是一个“raw”字符串,里面的字符就不需要转义了。例如:
r'\(~_~)//'
但是r'...'表示法不能表示多行字符串,也不能表示包含'和 "的字符串,如果要表示多行字符串。
Python如何调用特殊函数
__call__
在Python中,函数其实是一个对象:
f = abs
f.__name__
'abs'
f(-123)
由于 f 可以被调用,所以,f 被称为可调用对象。
所有的函数都是可调用对象。
一个类实例也可以变成一个可调用对象,只需要实现一个特殊方法__call__()。
我们把 Person 类变成一个可调用对象:
class Person(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender
def __call__(self, friend):
print 'My name is %s...' % self.name
print 'My friend is %s...' % friend
现在可以对 Person 实例直接调用:
p = Person('Bob', 'male')
p('Tim')
My name is Bob...
My friend is Tim...
单看 p('Tim') 你无法确定 p 是一个函数还是一个类实例,所以,在Python中,函数也是对象,对象和函数的区别并不显著。
任务
改进一下前面定义的斐波那契数列:
class Fib(object):
???
请加一个__call__方法,让调用更简单:
f = Fib()
print f(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
在Python中定义Main函数
目录
许多编程语言都有一个特殊的函数,当操作系统开始运行程序时会自动执行该函数。这个函数通常被命名为main(),并且依据语言标准具有特定的返回类型和参数。另一方面,Python解释器从文件顶部开始执行脚本,并且没有自动执行的特殊函数。
尽管如此,为程序的执行定义一个起始点有助于理解程序是如何运行的。Python程序员提出了几种方式对此进行实现。
本文结束时,您将了解以下内容:
Python中的基本main()函数
一些Python脚本中,包含一个函数定义和一个条件语句,如下所示:
此代码中,包含一个main()函数,在程序执行时打印Hello World!。此外,还包含一个条件(或if)语句,用于检查__name__的值并将其与字符串"__main__"进行比较。当if语句为True时,Python解释器将执行main()函数。更多关于Python条件语句的信息可以由此获得。
这种代码模式在Python文件中非常常见,它将作为脚本执行并导入另一个模块。为了帮助理解这段代码的执行方式,首先需要了解Python解释器如何根据代码的执行方式设置__name__。
Python中的执行模式
Python解释器执行代码有两种方式:
更多内容可参考如何运行Python脚本。无论采用哪种方式,Python都会定义一个名为__name__的特殊变量,该变量包含一个字符串,其值取决于代码的使用方式。
本文将如下示例文件保存为execution_methods.py,以 探索 代码如何根据上下文改变行为:
在此文件中,定义了三个对print()函数的调用。前两个打印一些介绍性短语。第三个print()会先打印短语The value __name__ is,之后将使用Python内置的repr()函数打印出__name__变量。
在Python中,repr()函数将对象转化为供解释器读取的形式。上述示例通过使用repr()函数来强调__name__的值为字符串。更多关于repr()的内容可参考Python文档。
在本文中,您将随处可见文件(file),模块(module)和脚本(script)这三个字眼。实际上,三者之间并无太大的差别。不过,在强调代码目的时,还是存在细微的差异:
“如何运行Python脚本”一文也讨论了三者的差别。
基于命令行执行
在这类方法中,Python脚本将通过命令行来执行。
执行脚本时,无法与Python解释器正在执行的代码交互。关于如何通过命令行执行代码的详细信息对本文而言并不重要,但您可以通过展开下框阅读更多有关Windows,Linux和macOS之间命令行差异的内容。
命令行环境
不同的操作系统在使用命令行执行代码时存在细微的差异。
在Linux和macOS中,通常使用如下命令:
美元符号($)之前的内容可能有所不同,具体取决于您的用户名和计算机名称。您键入的命令位于$之后。在Linux或macOS上,Python3的可执行文件名为python3,因此可以通过输入python3 script_name.py来运行python脚本。
在Windows上,命令提示符通常如下所示:
根据您的用户名,之前的内容可能会有所不同,您输入的命令位于之后。在Windows上,Python3的可执行文件通常为python。因此可以通过输入python script_name.py来运行python脚本。
无论哪种操作系统,本文的Python脚本的输出结果都是相同的。因此本文以Linux和macOS为例。
使用命令行执行execution_methods.py,如下所示:
在这个示例中,__name__具有值'__main__',其中引号(')表明该值为字符串类型。
请记住,在Python中,使用单引号(')和双引号(")定义的字符串没有区别。更多关于字符串的内容请参考Python的基本数据类型。
如果在脚本中包含"shebang行"并直接执行它(./execution_methods.py),或者使用IPython或Jupyter Notebook的%run,将会获取相同的结果。
您还可以通过向命令行添加-m参数的方法实现以模块的方式执行。通常情况下,推荐如下方式pip: python3 -m pip install package_name。
添加-m参数将会运行包中__main__.py的代码。更多关于__main__.py文件的内容可参考如何将开源Python包发布到PyPI中。
在三种情况中,__name__都具有相同的值:字符串'__main__'。
技术细节:Python文档中具体定义了__name__何时取值为'__main__'。
当通过标准输入,脚本或者交互提示中读取数据时,模块的__name__将取值为'__main__'。(来源)
__name__与__doc__,__package__和其他属性一起存储在模块的全局命名空间。更多关于属性的信息可参考Python数据模型文档,特别是关于模块和包的信息,请参阅Python Import文档。
导入模块或解释器
接下来是Python解释器执行代码的第二种方式:导入。在开发模块或脚本时,可以使用import关键字导入他人已经构建的模块。
在导入过程中,Python执行指定模块中定义的语句(但仅在第一次导入模块时)。要演示导入execution_methods.py文件的结果,需要启动Python解释器,然后导入execution_methods.py文件:
在此代码输出中,Python解释器执行了三次print()函数调用。前两行由于没有变量,在输出方面与在命令行上作为脚本执行时完全相同。但是第三个输出存在差异。
当Python解释器导入代码时,__name__的值与要导入的模块的名称相同。您可以通过第三行的输出了解这一点。__name__的值为'execution_methods',是Python导入的.py文件。
注意如果您在没有退出Python时再次导入模块,将不会有输出。
注意:更多关于导入在Python中如何工作的内容请参考官方文档和Python中的绝对和相对导入。
Main函数的最佳实践
既然您已经了解两种执行方式上的差异,那么掌握一些最佳实践方案还是很有用的。它们将适用于编写作为脚本运行的代码或者在另一个模块导入的代码。
如下是四种实践方式:
将大部分代码放入函数或类中
请记住,Python解释器在导入模块时会执行模块中的所有代码。有时如果想要实现用户可控的代码,会导致一些副作用,例如:
在这种情况下,想要实现用户控制触发此代码的执行,而不是让Python解释器在导入模块时执行代码。
因此,最佳方法是将大部分代码包含在函数或类中。这是因为当Python解释器遇到def或class关键字时,它只存储这些定义供以后使用,并且在用户通知之前不会实际执行。
将如下代码保存在best_practices.py以证明这个想法:
在此代码中,首先从time模块中导入sleep()。
在这个示例中,参数以秒的形式传入sleep()函数中,解释器将暂停一段时间再运行。随后,使用print()函数打印关于代码描述的语句。
之后,定义一个process_data()函数,执行如下五项操作:
在命令行中执行
当你将此文件作为脚本用命令行执行时会发生什么呢?
Python解释器将执行函数定义之外的from time import sleep和print(),之后将创建函数process_data()。然后,脚本将退出而不做任何进一步的操作,因为脚本没有任何执行process_data()的代码。
如下是这段脚本的执行结果:
我们在这里看到的输出是第一个print()的结果。注意,从time导入和定义process_data()函数不产生结果。具体来说,调用定义在process_data()内部的print()不会打印结果。
导入模块或解释器执行
在会话(或其他模块)中导入此文件时,Python解释器将执行相同的步骤。
Python解释器导入文件后,您可以使用已导入模块中定义的任何变量,类或函数。为了证明这一点,我们将使用可交互的Python解释器。启动解释器,然后键入import best_practices:
导入best_practices.py后唯一的输出来自process_data()函数外定义的print()。导入模块或解释器执行与基于命令行执行类似。
使用__name__控制代码的执行
如何实现基于命令行而不使用Python解释器导入文件来执行呢?
您可以使用__name__来决定执行上下文,并且当__name__等于"__main__"时才执行process_data()。在best_practices.py文件中添加如下代码:
这段代码添加了一个条件语句来检验__name__的值。当值为"__main__"时,条件为True。记住当__name__变量的特殊值为"__main__"时意味着Python解释器会执行脚本而不是将其导入。
条件语块内添加了四行代码(第12,13,14和15行):
现在,在命令行中运行best_practices.py,并观察输出的变化:
首先,输出显示了process_data()函数外的print()的调用结果。
之后,data的值被打印。因为当Python解释器将文件作为脚本执行时,变量__name__具有值"__main__",因此条件语句被计算为True。
接下来,脚本将调用process_data()并传入data进行修改。当process_data执行时,将输出一些状态信息。最终,将输出modified_data的值。
现在您可以验证从解释器(或其他模块)导入best_practices.py后发生的事情了。如下示例演示了这种情况:
注意,当前结果与将条件语句添加到文件末尾之前相同。因为此时__name__变量的值为"best_practices",因此条件语句结果为False,Python将不执行process_data()。
创建名为main()的函数来包含要运行的代码
现在,您可以编写作为脚本由从命令行执行并导入且没有副作用的Python代码。接下来,您将学习如何编写代码并使其他程序员能轻松地理解其含义。
许多语言,如C,C++,Java以及其他的一些语言,都会定义一个叫做main()的函数,当编译程序时,操作系统会自动调用该函数。此函数通常被称为入口点(entry point),因为它是程序进入执行的起始位置。
相比之下,Python没有一个特殊的函数作为脚本的入口点。实际上在Python中可以将入口点定义成任何名称。
尽管Python不要求将函数命名为main(),但是最佳的做法是将入口点函数命名为main()。这样方便其他程序员定位程序的起点。
此外,main()函数应该包含Python解释器执行文件时要运行的任何代码。这比将代码放入条件语块中更好,因为用户可以在导入模块时重复使用main()函数。
修改best_practices.py文件如下所示:
在这个示例中,定义了一个main()函数,它包含了上面的条件语句块。之后修改条件语块执行main()。如果您将此代码作为脚本运行或导入,将获得与上一节相同的输出。
在main()中调用其他函数
另一种常见的实现方式是在main()中调用其他函数,而不是直接将代码写入main()。这样做的好处在于可以实现将几个独立运行的子任务整合。
例如,某个脚本有如下功能:
如果在单独的函数中各自实现这些子任务,您(或其他用户)可以很容易地实现代码重用。之后您可以在main()函数中创建默认的工作流。
您可以根据自己的情况选择是否使用此方案。将任务拆分为多个函数会使重用更容易,但会增加他人理解代码的难度。
修改best_practices.py文件如下所示:
在此示例代码中,文件的前10行具有与之前相同的内容。第12行的第二个函数创建并返回一些示例数据,第17行的第三个函数模拟将修改后的数据写入数据库。
第21行定义了main()函数。在此示例中,对main()做出修改,它将调用数据读取,数据处理以及数据写入等功能。
首先,从read_data_from_web()中创建data。将data作为参数传入process_data(),之后将返回modified_data。最后,将modified_data传入write_data_to_database()。
脚本的最后两行是条件语块用于验证__name__,并且如果if语句为True,则执行main()。
在命令行中运行如下所示:
根据执行结果,Python解释器在执行main()函数时,将依次执行read_data_from_web(),process_data()以及write_data_to_database()。当然,您也可以导入best_practices.py文件并重用process_data()作为不同的数据输入源,如下所示:
在此示例中,导入了best_practices并且将其简写为bp。
导入过程会导致Python解释器执行best_practices.py的全部代码,因此输出显示解释文件用途的信息。
然后,从文件中存储数据而不是从Web中读取数据。之后,可以重用best_practices.py文件中的process_data()和write_data_to_database()函数。在此情况下,可以利用代码重写来取代在main()函数中实现全部的代码逻辑。
实践总结
以下是Python中main()函数的四个关键最佳实践:
结论
恭喜!您现在已经了解如何创建Python main()函数了。
本文介绍了如下内容:
现在,您可以开始编写一些非常棒的关于Python main()函数代码啦!
Python魔法函数(特殊函数)
Python中如何实现运算符的重载,即实现例如a+b这样的运算符操作呢?
在C++中可以使用 operator 关键字实现运算符的重载。但是在Python中没有类似这样的关键字,所以要实现运算符的重载,就要用到Python的魔法函数。Python魔法函数是以双下划线开头,双下划线结尾的一组函数。我们在类定义中最常用到的 __init__ 函数就是这样一个魔法函数,它在创建类对象时被自动调用。
下面我们来看个简单的例子。
上述代码示例了几个魔法函数的用法。 __add__ 函数对应了二元运算符+,当执行a+b语句时,python就会自动调用a. add (b)。 对于上述例子中的v1+v2+v3,则相当于调用了(v1. add(v2)). add(v3)。
代码中还有一个在Python类定义经常使用的 __str__ 函数,当使用 str() 时会被调用。print函数对传入的参数都调用了str()将其转换成易读的字符串形式,便于打印输出,因而会调用类定义的__str__函数打出自定义的字符串。
代码中还有一个特殊的 __call__ 函数,该函数在将对象采用函数调用方式使用时被调用, 例如v1()相当于v1. call ()。
以上就是魔法函数的基本使用方法。常见的魔法函数我们可以使用 dir() 函数来查看。
输出结果为:
上述结果中形式为‘__函数名__’的函数为魔法函数,注意有些对象也是这种形式,例如__class__, __module__等, 这些不是魔法函数。具体的魔法函数说明可以参考Python官方说明文档。
以上代码在Python3.6运行通过.
Python中处理属性的重要属性和函数是什么
处理属性的重要属性和函数
1、特殊属性
__class__:对象所属类的引用(即obj.__class__和type(obj)的作用相同)。Python中的某些特殊方法比如 __getattr__,只在对象的类中寻找,而不在实例中寻找。__dict__:一个映射,存储对象或类的可写属性。__slots__:类可以定义这个属性,限制实例有哪些属性。
2、内置函数
dir([object]):列出对象的大多数属性。getattr(object,name[,default]):从object对象中获取name字符串对应的属性。获取的属性可能来自对象所属的类或超类。hasattr(object,name):若object对象中存在指定的属性,或者能以某种方式(如继承)通过object对象获取指定的属性,返回True。setattr(object,name,value):把object对象指定属性的值设为value,前提是object对象能接受那个值。这个函数可能会创建一个新属性,或者覆盖现有的属性。var([object]):返回object对象的__dict__属性。
相关推荐:《Python视频教程》
3、特殊方法
__delattr__(self,name):只要使用del语句删除属性,就会调用这个方法。__dir__(self):把对象传给dir函数时调用,列出属性。__getattr__(self,name):仅当获取指定的属性失败,搜索过obj,Class和超类之后调用。__getattribute__(self,name):尝试获取指定的属性时总会调用这个方法。不过寻找的属性是特殊属性或特殊方法时除外。为了防止无限递归,__getattribute__方法的实现要使用super().__getattribute__(obj,name)。__setattr__(self,name,value):尝试设置指定的属性时总会调用这个方法。点号和setattr内置函数会触发这个方法。
相关推荐:
Python中的属性和特性是什么
Python析构函数
Python中有两个特殊的方法, 一个是构造函数 init , 另一个是析构函数 del ,统称为魔术方法。
构造函数 init ,创建实例对象之后Python会自动执行此方法,把初始化的属性特点放到实例对象里。
构造函数是创建并初始对象属性,那么对象使用完成后,系统是怎么处理这些呢?
这个时候,Python引入了销毁对象功能的析构函数 del ()
析构函数 del 是对象没有被引用时会触发垃圾回收机制,进行内存释放.
python 内置的 del 方法称为析构方法。用于实现对象被销毁时所需的操作。
常见的应用常见如:
析构方法 del ()是可选的,如果不提供,则Python 会在后台提供默认析构函数
如果要显式的调用析构函数,可以使用del关键字: del obj
析构方法的作用是销毁对象的,在python中采用垃圾回收机制。
Python垃圾回收机制核心思想是:
详细说明:
我们主动删除对象调用del 对象;程序运行结束后,python也会自动进行删除其他的对象。
注意:
如果我们重写子类的 del () 方法(父类为非 object 的类),则必须显式调用父类的 del () 方法,这样才能保证在回收子类对象时,其占用的资源(可能包含继承自父类的部分资源)能被彻底释放
我们本期学习了Python内置函数析构函数,用于没有被引用的对象进行回收处理,一般情况下,我们不用刻意去调用,python内部会对进行触发。
以上是本期内容,欢迎大佬们评论区指正,下期见~
网站题目:python特殊函数教程 python入门函数
文章起源:http://pcwzsj.com/article/doooech.html