go语言的i go语言的未来

为什么我不喜欢Go语言式的接口

所谓Go语言式的接口,就是不用显示声明类型T实现了接口I,只要类型T的公开方法完全满足接口I的要求,就可以把类型T的对象用在需要接口I的地方。这种做法的学名叫做Structural Typing,有人也把它看作是一种静态的Duck Typing。除了Go的接口以外,类似的东西也有比如Scala里的Traits等等。有人觉得这个特性很好,但我个人并不喜欢这种做法,所以在这里谈谈它的缺点。当然这跟动态语言静态语言的讨论类似,不能简单粗暴的下一个“好”或“不好”的结论。

成都创新互联公司是一家专注于网站制作、成都网站设计与策划设计,商丘网站建设哪家好?成都创新互联公司做网站,专注于网站建设十载,网设计领域的专业建站公司;建站业务涵盖:商丘等地区。商丘做网站价格咨询:13518219792

我的观点:

Go的隐式接口Duck Typing确实不是新技术, 但是在主流静态编程语言中支持Duck Typing应该是很少的(不清楚目前是否只有Go语言支持).

静态类型和动态类型虽然没有绝对的好和不好, 但是每个都是有自己的优势的, 没有哪一个可以包办一切. 而Go是试图结合静态类型和动态类型(interface)各自的优势.

那么就从头谈起:什么是接口。其实通俗的讲,接口就是一个协议,规定了一组成员,例如.NET里的ICollection接口:

public interface ICollection {

int Count { get; }

object SyncRoot { get; }

bool IsSynchronized { get; }

void CopyTo(Array array, int index);

}

这就是一个协议的全部了吗?事实并非如此,其实接口还规定了每个行为的“特征”。打个比方,这个接口的Count除了需要返回集合内元素的数目以外,还隐含了它需要在O(1)时间内返回这个要求。这样一个使用了ICollection接口的方法才能放心地使用Count属性来获取集合大小,才能在知道这些特征的情况下选用正确的算法来编写程序,而不用担心带来性能问题,这才能实现所谓的“面向接口编程”。当然这种“特征”并不但指“性能”上的,例如Count还包含了例如“不修改集合内容”这种看似十分自然的隐藏要求,这都是ICollection协议的一部分。

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

Go语言中怎样判断数据类型

要判断数据类型,可以用Go的空接口:

建一个函数t 设置参数i 的类型为空接口,空接口可以接受任何数据类型

func t(i interface{}) {

//函数t

有一个参数i

switch i.(type) {

//多选语句switch

case string:

//是字符时做的事情

case int:

//是整数时做的事情

}

return

}

i.(type)

只能在switch中使用

这函数没有返回值,你可以自己加入

还可以用反射:

package main

import (

"fmt"

"reflect"

)

func main() {

var x float64 = 3.4

fmt.Println("type:", reflect.TypeOf(x))

}

这样就可以得出变量x的类型信息,与上面不同的是:上面的方法要先知到它是几个类型中的一个,而这个方法可以对任意对象使用

go语言数组,切片和字典的区别和联系

、数组 

与其他大多数语言类似,Go语言的数组也是一个元素类型相同的定长的序列。

(1)数组的创建。

数组有3种创建方式:[length]Type 、[N]Type{value1, value2, ... , valueN}、[...]Type{value1, value2, ... , valueN} 如下:

复制代码代码如下:

func test5() {

var iarray1 [5]int32

var iarray2 [5]int32 = [5]int32{1, 2, 3, 4, 5}

iarray3 := [5]int32{1, 2, 3, 4, 5}

iarray4 := [5]int32{6, 7, 8, 9, 10}

iarray5 := [...]int32{11, 12, 13, 14, 15}

iarray6 := [4][4]int32{{1}, {1, 2}, {1, 2, 3}}

fmt.Println(iarray1)

fmt.Println(iarray2)

fmt.Println(iarray3)

fmt.Println(iarray4)

fmt.Println(iarray5)

fmt.Println(iarray6)

}

结果:

[0 0 0 0 0]

[1 2 3 4 5]

[1 2 3 4 5]

[6 7 8 9 10]

[11 12 13 14 15]

[[1 0 0 0] [1 2 0 0] [1 2 3 0] [0 0 0 0]]

我们看数组 iarray1,只声明,并未赋值,Go语言帮我们自动赋值为0。再看 iarray2 和 iarray3 ,我们可以看到,Go语言的声明,可以表明类型,也可以不表明类型,var iarray3 = [5]int32{1, 2, 3, 4, 5} 也是完全没问题的。

(2)数组的容量和长度是一样的。cap() 函数和 len() 函数均输出数组的容量(即长度)。如:

复制代码代码如下:

func test6() {

iarray4 := [5]int32{6, 7, 8, 9, 10}

fmt.Println(len(iarray4))

fmt.Println(cap(iarray4))

}

输出都是5。

(3)使用:

复制代码代码如下:

func test7() {

iarray7 := [5]string{"aaa", `bb`, "可以啦", "叫我说什么好", "()"}

fmt.Println(iarray7)

for i := range iarray7 {

fmt.Println(iarray7[i])

}

}

二、切片

Go语言中,切片是长度可变、容量固定的相同的元素序列。Go语言的切片本质是一个数组。容量固定是因为数组的长度是固定的,切片的容量即隐藏数组的长度。长度可变指的是在数组长度的范围内可变。

(1)切片的创建。

切片的创建有4种方式:

1)make ( []Type ,length, capacity )

2) make ( []Type, length)

3) []Type{}

4) []Type{value1 , value2 , ... , valueN }

从3)、4)可见,创建切片跟创建数组唯一的区别在于 Type 前的“ [] ”中是否有数字,为空,则代表切片,否则则代表数组。因为切片是长度可变的。如下是创建切片的示例:

复制代码代码如下:

func test8() {

slice1 := make([]int32, 5, 8)

slice2 := make([]int32, 9)

slice3 := []int32{}

slice4 := []int32{1, 2, 3, 4, 5}

fmt.Println(slice1)

fmt.Println(slice2)

fmt.Println(slice3)

fmt.Println(slice4)

}

输出为:

[0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[]

[1 2 3 4 5]

如上,创造了4个切片,3个空切片,一个有值的切片。

(2)切片与隐藏数组:

一个切片是一个隐藏数组的引用,并且对于该切片的切片也引用同一个数组。如下示例,创建了一个切片slice0,并根据这个切片创建了2个切片 slice1 和 slice2:

复制代码代码如下:

func test9() {

slice0 := []string{"a", "b", "c", "d", "e"}

slice1 := slice0[2 : len(slice0)-1]

slice2 := slice0[:3]

fmt.Println(slice0, slice1, slice2)

slice2[2] = "8"

fmt.Println(slice0, slice1, slice2)

}

输出为:

[a b c d e] [c d] [a b c]

[a b 8 d e] [8 d] [a b 8]

可见,切片slice0 、 slice1 和 slice2是同一个底层数组的引用,所以slice2改变了,其他两个都会变。

(3)遍历、修改切片:

复制代码代码如下:

func test10() {

slice0 := []string{"a", "b", "c", "d", "e"}

fmt.Println("\n~~~~~~元素遍历~~~~~~")

for _, ele := range slice0 {

fmt.Print(ele, " ")

ele = "7"

}

fmt.Println("\n~~~~~~索引遍历~~~~~~")

for index := range slice0 {

fmt.Print(slice0[index], " ")

}

fmt.Println("\n~~~~~~元素索引共同使用~~~~~~")

for index, ele := range slice0 {

fmt.Print(ele, slice0[index], " ")

}

fmt.Println("\n~~~~~~修改~~~~~~")

for index := range slice0 {

slice0[index] = "9"

}

fmt.Println(slice0)

}

如上,前三种循环使用了不同的for range循环,当for后面,range前面有2个元素时,第一个元素代表索引,第二个元素代表元素值,使用 “_” 则表示忽略,因为go语言中,未使用的值会导致编译错误。

只有一个元素时,该元素代表索引。

只有用索引才能修改元素。如在第一个遍历中,赋值ele为7,结果没有作用。因为在元素遍历中,ele是值传递,ele是该切片元素的副本,修改它不会影响原本值,而在第四个遍历——索引遍历中,修改的是该切片元素引用的值,所以可以修改。

结果为:

~~~~~~元素遍历~~~~~~

a b c d e

~~~~~~索引遍历~~~~~~

a b c d e

~~~~~~元素索引共同使用~~~~~~

aa bb cc dd ee

~~~~~~修改~~~~~~

[9 9 9 9 9]

(4)、追加、复制切片:

复制代码代码如下:

func test11() {

slice := []int32{}

fmt.Printf("slice的长度为:%d,slice为:%v\n", len(slice), slice)

slice = append(slice, 12, 11, 10, 9)

fmt.Printf("追加后,slice的长度为:%d,slice为:%v\n", len(slice), slice)

slicecp := make([]int32, (len(slice)))

fmt.Printf("slicecp的长度为:%d,slicecp为:%v\n", len(slicecp), slicecp)

copy(slicecp, slice)

fmt.Printf("复制赋值后,slicecp的长度为:%d,slicecp为:%v\n", len(slicecp), slicecp)

}

追加、复制切片,用的是内置函数append和copy,copy函数返回的是最后所复制的元素的数量。

(5)、内置函数append

内置函数append可以向一个切片后追加一个或多个同类型的其他值。如果追加的元素数量超过了原切片容量,那么最后返回的是一个全新数组中的全新切片。如果没有超过,那么最后返回的是原数组中的全新切片。无论如何,append对原切片无任何影响。如下示例:

复制代码代码如下:

func test12() {

slice := []int32{1, 2, 3, 4, 5, 6}

slice2 := slice[:2]

_ = append(slice2, 50, 60, 70, 80, 90)

fmt.Printf("slice为:%v\n", slice)

fmt.Printf("操作的切片:%v\n", slice2)

_ = append(slice2, 50, 60)

fmt.Printf("slice为:%v\n", slice)

fmt.Printf("操作的切片:%v\n", slice2)

}

如上,append方法用了2次,结果返回的结果完全不同,原因是第二次append方法追加的元素数量没有超过 slice 的容量。而无论怎样,原切片slice2都无影响。结果:

slice为:[1 2 3 4 5 6]

操作的切片:[1 2]

slice为:[1 2 50 60 5 6]

操作的切片:[1 2]

Go语言和其他语言的不同之基本语法

Go语言作为出现比较晚的一门编程语言,在其原生支持高并发、云原生等领域的优秀表现,像目前比较流行的容器编排技术Kubernetes、容器技术Docker都是用Go语言写的,像Java等其他面向对象的语言,虽然也能做云原生相关的开发,但是支持的程度远没有Go语言高,凭借其语言特性和简单的编程方式,弥补了其他编程语言一定程度上的不足,一度成为一个热门的编程语言。

最近在学习Go语言,我之前使用过C#、Java等面向对象编程的语言,发现其中有很多的编程方式和其他语言有区别的地方,好记性不如烂笔头,总结一下,和其他语言做个对比。这里只总结差异的地方,具体的语法不做详细的介绍。

种一棵树最好的时间是十年前,其次是现在。

3)变量初始化时候可以和其他语言一样直接在变量后面加等号,等号后面为要初始化的值,也可以使用变量名:=变量值的简单方式

3)变量赋值 Go语言的变量赋值和多数语言一致,但是Go语言提供了多重赋值的功能,比如下面这个交换i、j变量的语句:

在不支持多重赋值的语言中,交换两个变量的值需要引入一个中间变量:

4)匿名变量

在使用其他语言时,有时候要获取一个值,却因为该函数返回多个值而不得不定义很多没有的变量,Go语言可以借助多重返回值和匿名变量来避免这种写法,使代码看起来更优雅。

假如GetName()函数返回3个值,分别是firstName,lastName和nickName

若指向获得nickName,则函数调用可以这样写

这种写法可以让代码更清晰,从而大幅降低沟通的复杂度和维护的难度。

1)基本常量

常量使用关键字const 定义,可以限定常量类型,但不是必须的,如果没有定义常量的类型,是无类型常量

2)预定义常量

Go语言预定义了这些常量 true、false和iota

iota比较特殊,可以被任务是一个可被编译器修改的常量,在每个const关键字出现时被重置为0,然后在下一个const出现之前每出现一个iota,其所代表的数字会自动加1.

3)枚举

1)int 和int32在Go语言中被认为是两种不同类型的类型

2)Go语言定义了两个浮点型float32和float64,其中前者等价于C语言的float类型,后者等价于C语言的double类型

3)go语言支持复数类型

复数实际上是由两个实数(在计算机中使用浮点数表示)构成,一个表示实部(real)、一个表示虚部(imag)。也就是数学上的那个复数

复数的表示

实部与虚部

对于一个复数z=complex(x,y),就可以通过Go语言内置函数real(z)获得该复数的实部,也就是x,通过imag(z)获得该复数的虚部,也就是y

4)数组(值类型,长度在定义后无法再次修改,每次传递都将产生一个副本。)

5)数组切片(slice)

数组切片(slice)弥补了数组的不足,其数据结构可以抽象为以下三个变量:

6)Map 在go语言中Map不需要引入任何库,使用很方便

Go循环语句只支持for关键字,不支持while和do-while

goto语句的语义非常简单,就是跳转到本函数内的某个标签

今天就介绍到这里,以后我会在总结Go语言在其他方面比如并发编程、面向对象、网络编程等方面的不同及使用方法。希望对大家有所帮助。

Go语言冒泡排序逻辑求解释,请根据这段代码解释下,就是没看懂i是做什么用的

package main

import "fmt"

func Bub(value []int) {

flag := true //这里是打一个标识的意思

for i := 0; i  len(value)-1; i++ { //每完成一次这里的循环,都会有一个元素冒泡到最上面

flag = true

fmt.Printf("i=%d j=%d\n", i, len(value)-i-1)

for j := 0; j  len(value)-i-1; j++ {

if value[j]  value[j+1] {

value[j], value[j+1] = value[j+1], value[j]

flag = false

}

}

if flag == true { //当没有发生位置交换的时候说明,顺序排好了

break

}

}

}

func main() {

a := []int{7, 2, 1, 3, 5}

Bub(a)

}

只能帮你到这里了,建议你用在纸上演算一遍 那个 a 变量


网页题目:go语言的i go语言的未来
网站URL:http://pcwzsj.com/article/doocjgi.html