mysql慢日志怎么分析 mysql慢日志开启

MySQL中如何查看“慢查询”,如何分析执行SQL的效率?

一、MySQL数据库有几个配置选项可以帮助我们及时捕获低效SQL语句\x0d\x0a\x0d\x0a1,slow_query_log\x0d\x0a这个参数设置为ON,可以捕获执行时间超过一定数值的SQL语句。\x0d\x0a\x0d\x0a2,long_query_time\x0d\x0a当SQL语句执行时间超过此数值时,就会被记录到日志中,建议设置为1或者更短。\x0d\x0a\x0d\x0a3,slow_query_log_file\x0d\x0a记录日志的文件名。\x0d\x0a\x0d\x0a4,log_queries_not_using_indexes\x0d\x0a这个参数设置为ON,可以捕获到所有未使用索引的SQL语句,尽管这个SQL语句有可能执行得挺快。\x0d\x0a\x0d\x0a二、检测mysql中sql语句的效率的方法\x0d\x0a\x0d\x0a1、通过查询日志\x0d\x0a(1)、Windows下开启MySQL慢查询\x0d\x0aMySQL在Windows系统中的配置文件一般是是my.ini找到[mysqld]下面加上\x0d\x0a代码如下\x0d\x0alog-slow-queries = F:/MySQL/log/mysqlslowquery。log\x0d\x0along_query_time = 2\x0d\x0a\x0d\x0a(2)、Linux下启用MySQL慢查询\x0d\x0aMySQL在Windows系统中的配置文件一般是是my.cnf找到[mysqld]下面加上\x0d\x0a代码如下\x0d\x0alog-slow-queries=/data/mysqldata/slowquery。log\x0d\x0along_query_time=2\x0d\x0a说明\x0d\x0alog-slow-queries = F:/MySQL/log/mysqlslowquery。\x0d\x0a为慢查询日志存放的位置,一般这个目录要有MySQL的运行帐号的可写权限,一般都将这个目录设置为MySQL的数据存放目录;\x0d\x0along_query_time=2中的2表示查询超过两秒才记录;\x0d\x0a\x0d\x0a2.show processlist 命令\x0d\x0a\x0d\x0aSHOW PROCESSLIST显示哪些线程正在运行。您也可以使用mysqladmin processlist语句得到此信息。\x0d\x0a各列的含义和用途:\x0d\x0aID列\x0d\x0a一个标识,你要kill一个语句的时候很有用,用命令杀掉此查询 /*/mysqladmin kill 进程号。\x0d\x0auser列\x0d\x0a显示单前用户,如果不是root,这个命令就只显示你权限范围内的sql语句。\x0d\x0ahost列\x0d\x0a显示这个语句是从哪个ip的哪个端口上发出的。用于追踪出问题语句的用户。\x0d\x0adb列\x0d\x0a显示这个进程目前连接的是哪个数据库。\x0d\x0acommand列\x0d\x0a显示当前连接的执行的命令,一般就是休眠(sleep),查询(query),连接(connect)。\x0d\x0atime列\x0d\x0a此这个状态持续的时间,单位是秒。\x0d\x0astate列\x0d\x0a显示使用当前连接的sql语句的状态,很重要的列,后续会有所有的状态的描述,请注意,state只是语句执行中的某一个状态,一个 sql语句,以查询为例,可能需要经过copying to tmp table,Sorting result,Sending data等状态才可以完成\x0d\x0ainfo列\x0d\x0a显示这个sql语句,因为长度有限,所以长的sql语句就显示不全,但是一个判断问题语句的重要依据。\x0d\x0a\x0d\x0a这个命令中最关键的就是state列,mysql列出的状态主要有以下几种:\x0d\x0aChecking table\x0d\x0a 正在检查数据表(这是自动的)。\x0d\x0aClosing tables\x0d\x0a 正在将表中修改的数据刷新到磁盘中,同时正在关闭已经用完的表。这是一个很快的操作,如果不是这样的话,就应该确认磁盘空间是否已经满了或者磁盘是否正处于重负中。\x0d\x0aConnect Out\x0d\x0a 复制从服务器正在连接主服务器。\x0d\x0a\x0d\x0aCopying to tmp table on disk\x0d\x0a 由于临时结果集大于tmp_table_size,正在将临时表从内存存储转为磁盘存储以此节省内存。\x0d\x0aCreating tmp table\x0d\x0a 正在创建临时表以存放部分查询结果。\x0d\x0adeleting from main table\x0d\x0a 服务器正在执行多表删除中的第一部分,刚删除第一个表。\x0d\x0adeleting from reference tables\x0d\x0a 服务器正在执行多表删除中的第二部分,正在删除其他表的记录。\x0d\x0a\x0d\x0aFlushing tables\x0d\x0a 正在执行FLUSH TABLES,等待其他线程关闭数据表。\x0d\x0aKilled\x0d\x0a 发送了一个kill请求给某线程,那么这个线程将会检查kill标志位,同时会放弃下一个kill请求。MySQL会在每次的主循环中检查kill标志位,不过有些情况下该线程可能会过一小段才能死掉。如果该线程程被其他线程锁住了,那么kill请求会在锁释放时马上生效。\x0d\x0aLocked\x0d\x0a 被其他查询锁住了。\x0d\x0aSending data\x0d\x0a 正在处理SELECT查询的记录,同时正在把结果发送给客户端。\x0d\x0a\x0d\x0aSorting for group\x0d\x0a 正在为GROUP BY做排序。\x0d\x0a Sorting for order\x0d\x0a 正在为ORDER BY做排序。\x0d\x0aOpening tables\x0d\x0a 这个过程应该会很快,除非受到其他因素的干扰。例如,在执ALTER TABLE或LOCK TABLE语句行完以前,数据表无法被其他线程打开。正尝试打开一个表。\x0d\x0aRemoving duplicates\x0d\x0a 正在执行一个SELECT DISTINCT方式的查询,但是MySQL无法在前一个阶段优化掉那些重复的记录。因此,MySQL需要再次去掉重复的记录,然后再把结果发送给客户端。\x0d\x0a\x0d\x0aReopen table\x0d\x0a 获得了对一个表的锁,但是必须在表结构修改之后才能获得这个锁。已经释放锁,关闭数据表,正尝试重新打开数据表。\x0d\x0aRepair by sorting\x0d\x0a 修复指令正在排序以创建索引。\x0d\x0aRepair with keycache\x0d\x0a 修复指令正在利用索引缓存一个一个地创建新索引。它会比Repair by sorting慢些。\x0d\x0aSearching rows for update\x0d\x0a 正在讲符合条件的记录找出来以备更新。它必须在UPDATE要修改相关的记录之前就完成了。\x0d\x0aSleeping\x0d\x0a 正在等待客户端发送新请求.\x0d\x0a\x0d\x0aSystem lock\x0d\x0a 正在等待取得一个外部的系统锁。如果当前没有运行多个mysqld服务器同时请求同一个表,那么可以通过增加--skip-external-locking参数来禁止外部系统锁。\x0d\x0aUpgrading lock\x0d\x0a INSERT DELAYED正在尝试取得一个锁表以插入新记录。\x0d\x0aUpdating\x0d\x0a 正在搜索匹配的记录,并且修改它们。\x0d\x0a\x0d\x0aUser Lock\x0d\x0a 正在等待GET_LOCK()。\x0d\x0aWaiting for tables\x0d\x0a 该线程得到通知,数据表结构已经被修改了,需要重新打开数据表以取得新的结构。然后,为了能的重新打开数据表,必须等到所有其他线程关闭这个表。以下几种情况下会产生这个通知:FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE,或OPTIMIZE TABLE。\x0d\x0awaiting for handler insert\x0d\x0a INSERT DELAYED已经处理完了所有待处理的插入操作,正在等待新的请求。\x0d\x0a 大部分状态对应很快的操作,只要有一个线程保持同一个状态好几秒钟,那么可能是有问题发生了,需要检查一下。\x0d\x0a 还有其他的状态没在上面中列出来,不过它们大部分只是在查看服务器是否有存在错误是才用得着。\x0d\x0a\x0d\x0a例如如图:\x0d\x0a\x0d\x0a3、explain来了解SQL执行的状态\x0d\x0aexplain显示了mysql如何使用索引来处理select语句以及连接表。可以帮助选择更好的索引和写出更优化的查询语句。\x0d\x0a使用方法,在select语句前加上explain就可以了:\x0d\x0a例如:\x0d\x0aexplain select surname,first_name form a,b where a.id=b.id\x0d\x0a结果如图\x0d\x0a\x0d\x0aEXPLAIN列的解释\x0d\x0atable\x0d\x0a显示这一行的数据是关于哪张表的\x0d\x0atype\x0d\x0a这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和ALL\x0d\x0apossible_keys\x0d\x0a显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从WHERE语句中选择一个合适的语句\x0d\x0akey\x0d\x0a实际使用的索引。如果为NULL,则没有使用索引。很少的情况下,MYSQL会选择优化不足的索引。这种情况下,可以在SELECT语句 中使用USE INDEX(indexname)来强制使用一个索引或者用IGNORE INDEX(indexname)来强制MYSQL忽略索引\x0d\x0akey_len\x0d\x0a使用的索引的长度。在不损失精确性的情况下,长度越短越好\x0d\x0aref\x0d\x0a显示索引的哪一列被使用了,如果可能的话,是一个常数\x0d\x0arows\x0d\x0aMYSQL认为必须检查的用来返回请求数据的行数\x0d\x0aExtra\x0d\x0a关于MYSQL如何解析查询的额外信息。将在表4.3中讨论,但这里可以看到的坏的例子是Using temporary和Using filesort,意思MYSQL根本不能使用索引,结果是检索会很慢\x0d\x0a\x0d\x0aextra列返回的描述的意义\x0d\x0aDistinct\x0d\x0a一旦MYSQL找到了与行相联合匹配的行,就不再搜索了\x0d\x0aNot exists\x0d\x0aMYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,就不再搜索了\x0d\x0aRange checked for each Record(index map:#)\x0d\x0a没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一\x0d\x0aUsing filesort\x0d\x0a看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行\x0d\x0aUsing index\x0d\x0a列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候\x0d\x0aUsing temporary\x0d\x0a看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上\x0d\x0aWhere used\x0d\x0a使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题不同连接类型的解释(按照效率高低的顺序排序)\x0d\x0aconst\x0d\x0a表中的一个记录的最大值能够匹配这个查询(索引可以是主键或惟一索引)。因为只有一行,这个值实际就是常数,因为MYSQL先读这个值然后把它当做常数来对待\x0d\x0aeq_ref\x0d\x0a在连接中,MYSQL在查询时,从前面的表中,对每一个记录的联合都从表中读取一个记录,它在查询使用了索引为主键或惟一键的全部时使用\x0d\x0aref\x0d\x0a这个连接类型只有在查询使用了不是惟一或主键的键或者是这些类型的部分(比如,利用最左边前缀)时发生。对于之前的表的每一个行联合,全部记录都将从表中读出。这个类型严重依赖于根据索引匹配的记录多少—越少越好\x0d\x0arange\x0d\x0a这个连接类型使用索引返回一个范围中的行,比如使用或

创新互联主要从事成都网站设计、成都做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务陆良,10多年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:028-86922220

回答于 2022-11-16

ELK 构建 MySQL 慢日志收集平台

本文讲解如何通过一套开源日志存储和检索系统 ELK 构建 MySQL 慢日志收集及分析平台。

ELK、EFK 简介

想必你对 ELK、EFK 都不陌生,它们有一个共同的组件:Elasticsearch(简称ES),它是一个实时的全文搜索和分析引擎,可以提供日志数据的收集、分析、存储 3 大功能。另外一个组件 Kibana 是这套检索系统中的 Web 图形化界面系统,可视化展示在 Elasticsearch 的日志数据和结果。

ELF/EFK 工具集中还有 l 和 F 这两个名称的缩写,这两个缩写代表的工具根据不同的架构和使用方式而定。

L 通常是 Logstash 组件,它是一个用来搜集、分析、过滤日志的工具 。

F 代表 Beats 工具(它是一个轻量级的日志采集器),Beats 家族有 6 个成员,Filebeat 工具,它是一个用于在客户端收集日志的轻量级管理工具。

F 也可以代表工具 fluentd,它是这套架构里面常用的日志收集、处理转发的工具。

那么它们(Logstash VS Beats VS fluentd)有什么样的区别呢?Beats 里面是一个工具集,其中包含了 Filebeat 这样一个针对性的日志收集工具。Logstash 除了做日志的收集以外,还可以提供分析和过滤功能,所以它的功能会更加的强大。

Beats 和 fluentd 有一个共同的特点,就是轻量级,没有 Logstash 功能全面。但如果比较注重日志收集性能,Beats 里面的 Filebeat 和 fluentd 这两个工具会更有优势。

Kafka 是 ELK 和 EFK 里面一个附加的关键组件(缩写 K),它主要是在支持高并发的日志收集系统里面提供分布式的消息队列服务。

ELK 的优势

在此之前,先介绍 ELK 日志分析会有一些什么样的优势?主要有 3 点:

1、它是一套开源、完整的日志检索分析系统,包含收集、存储、分析、检索工具。我们不需要去开发一些额外的组件去完成这套功能,因为它默认的开源方式就提供了一整套组件,只要组合起来,就可以完成从日志收集、检索、存储、到整个展示的完整解决方案了。

2、支持可视化的数据浏览。运维人员只要在控制台里选择想关注的某一段时间内的数据,就可以查看相应的报表,非常快捷和方便。

3、它能广泛的支持一些架构平台,比如我们现在讲到的 K8s 或者是云原生的微服务架构。

Kafka 作为日志消息队列,客户端通过 Filebeat 收集数据(日志)后将其先存入 Kafka,然后由 Logstash 提取并消费,这套架构的好处是:当我们有海量日志同步情况下,直接存入服务端 ES 很难直接应承接海量流量,所以 Kafka 会进行临时性的存取和缓冲,再由 Logstash 进行提取、过滤,通过 Logstash 以后,再把满足条件的日志数据存入 ES。

ES 不再是以单实例的方部署,而是采用集群架构,考虑 Kafka 的集群模式, Logstash 也使用集群模式。

我们会看到这套架构稍微庞大,大中型的企业往往存储海量数据(上百 T 或 P 级)运维日志、或者是系统日志、业务日志。

完成ELK服务搭建后,首先我需要开启的是 MySQL 的慢查询配置,那么通过 set global slow_query_log=‘ON‘,这样就可以开启慢查询日志,还需要设置好慢查询日志标准是大于 1 秒的,那么同样是 set global long_query_time 大于或等于 1,它的意思是大于 1 秒的查询语句,才会认为是慢查询,并且做日志的记录。

那么另外还要设置慢查询日志的位置,通过 set global slow_query_log = 日志文件路径,这里设置到 filebeat 配置监听的路径下,就完成了慢查询日志的路径设置。

配置完成以后,需要在 MySQL 终端上,模拟执行一条执行时间较长的语句,比如执行 select sleep(5),这样就会模拟执行一条查询语句,并且会让它休眠 5 秒。接下来我们看到服务端窗口的 MySQL 这条 sleep 语句已经执行完毕了,同时我们可以再打开 filebeat 的推送窗口,发现这里产生了一条推送日志,表示成功地把这条日志推送给了 ES。

那么接下来我们就可以通过浏览器打开 Kibana 的管理后台,从界面里来看一看检索日志的记录和一些可视化展示的图表,我们可以点击界面上的 Discover 按钮,同时选择好对应的时间周期,然后可以增加一个 filter 过滤器,过滤器里面敲入对应的关键字来进行索引。

这里我敲入的是 slow.query 这个关键字,就会匹配出对应的可以检索的项目,点击想要查询的对应项目,展示出想检索的某一个时间周期内对应的一些日志记录,以及它的图表是什么样子的,同时在下方会有对应的 MySQL 的日志信息打印出来,通过 Kibana 这样的可视化界面就能够看到的相关信息了。

MySQL查询效率很慢的问题如何分析和解决

MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。

如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:

1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。

临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。


网站名称:mysql慢日志怎么分析 mysql慢日志开启
当前网址:http://pcwzsj.com/article/dojgggj.html