gis技术的使用日渐成熟 举例说明gis技术是如何应用的?
地理信息系统
地理信息系统是计算机科学、地理学、测量学和地图学等多门学科的交叉,它是以地理空间数据库为基础,采用地理模型分析方法实时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。
创新互联建站专注于扶余网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供扶余营销型网站建设,扶余网站制作、扶余网页设计、扶余网站官网定制、微信小程序开发服务,打造扶余网络公司原创品牌,更为您提供扶余网站排名全网营销落地服务。
从表现形式来看,GIS表现为计算机软硬件系统,其核心是管理、计算、分析地理坐标位置信息及相关位置上属性信息的数据库系统。它表达的是空间位置及所有与位置相关的信息,所以,GIS又是地球空间实体的再现和综合,其信息的基本表达形式是各种二维或三维电子地图。因此,GIS也可简单定义为“用于采集、模拟、处理、检索、分析和表达地理空间数据的计算机信息系统”。
(一)GIS发展简史
GIS最早起源于20世纪60年代“要把地图变成数字形式的地图,便于计算机处理分析”这样的目的。1963年,加拿大测量学家R.F.Tomlinson首先提出了GIS这一术语,并建成世界上第一个GIS(加拿大地理信息系统,CGIS),用于自然资源的管理和规划。那时的GIS注重于空间数据的地学处理。
20世纪70年代以后,随着计算机软、硬件水平的提高,以及政府部门在自然资源管理、规划和环境保护等方面对空间信息进行分析、处理的需求,GIS得到了巩固和发展。
进入20世纪80年代,GIS的应用领域迅速扩大,商业化的软件开始进入市场,其应用从基础信息管理与规划转向空间决策支持分析,地理信息产业的雏形开始形成。
20世纪90年代以后,伴随着计算机技术和网络技术的迅猛发展,GIS的应用也日趋深化和广泛,在国土资源、农业、气象、环境、城市规划等领域成为常备的工作系统。尤其是1998年“数字地球”的概念被提出以后,GIS在全球得到了空前迅速的发展,广泛应用于各个领域,产生了巨大的经济和社会效益。
我国GIS的发展自20世纪80年代初开始,以1980年中国科学院遥感应用研究所成立全国第一个GIS研究室为标志,经历了准备(1980~1985年)、发展(1985~1995年)、产业化(1996年以后)3个阶段。尤其是近年来,国内出现了不少优秀的GIS软件。
(二)GIS的最新发展
1.日趋与计算机信息技术融合
近年来随着计算机软、硬件技术和通信技术的高速发展,GIS技术也得到了迅速的发展和更广泛的应用,并日趋与主流IT技术融合,成为信息技术发展的一个新方向。
GIS发展的动力一方面来自于日益广泛的应用领域对GIS不断提高的要求;另一方面,计算机科学的飞速发展为GIS提供了先进的工具和手段。许多计算机领域的新技术,如面向对象技术、三维技术、图像处理和人工智能技术都可以直接应用到GIS中;同时,由于空间技术的迅猛发展,特别是遥感技术的发展,提供了地球空间环境中不同时相的数据,使GIS的作用日渐突出,GIS不断升级并能提供存储、处理和分析海量地理数据的环境。
组件式GIS技术的发展使之可以与其他计算机信息系统无缝集成、跨语言使用,并提供了无限扩展的数据可视化表达形式。
2.动态、多源、多维、网络化
最新GIS技术将逐渐摆脱先前的主要处理静态的、二维的、数字式的地图技术的约束,而从传统的静态地图、电子地图发展到能对空间信息进行可视化和动态分析、动态模拟,支持动态的、可视化的、交互的环境来处理、分析、显示多维和多源地理空间数据。其中,可视化仿真技术能使人们在三维图形世界中直接对具有形态的信息进行实时交互操作;虚拟现实技术以三维图形为主,结合网络、多媒体、立体视觉、新型传感技术,能创造一个让人身临其境的虚拟的数字地球或数字城市。
先进的对地观测技术、互操作技术、海量数据存储和压缩技术、网络技术、分布式技术、面向对象技术、空间数据仓库、数据挖掘等技术的发展都为GIS的发展和创新创造了新的手段。
(三)第四代GIS技术
随着计算机硬件性能的提高以及面向对象、网络和数据挖掘等主流IT技术的发展,在科技部有关部门的倡导下,目前国内学术界又提出了第四代GIS技术的概念。第四代GIS技术将主要有如下特点:
(1)支持“数字地球”或“数字城市”概念的实现,从二维向多维发展,从静态数据处理向动态数据处理发展,具有时序数据处理能力。
(2)基于网络的分布式数据管理及计算、WebGIS和B/S体系结构,用户可以实现远程空间数据调用、检索、查询、分析,具有联机事务管理(OLTP)和联机分析(OLAP)管理能力。
(3)面向空间实体及其相互关系的数据组织和融合,具有矢量和遥感影像数据互动等多源数据的装载与融合能力,可实现多尺度比例尺数据无缝融合与互动。
(4)具有统一的海量数据存储、查询和分析处理能力及基于空间数据的数据挖掘和强大的模型支持能力。
(5)具有与其他计算机信息系统的整体集成能力。例如与MIS、ERP、OA等各种企业信息化系统的无缝集成;微型、嵌入式GIS与各种掌上终端设备集成,如PDA、手机、GPS接收设备等。
(6)具有虚拟现实表达及自适应可视化能力,针对不同的用户出现不同的用户界面及地图和虚拟现实效果。
(四)GIS的应用
人类使用的信息中有80%与地理位置和空间分布有关,所以GIS具有非常广泛的应用。目前,GIS已经比较成熟地应用于军事、自然资源管理、土地和城市管理、电力、电信、石油和天然气、城市规划、交通运输、环境监测和保护、110和120快速反应系统等。
今后,GIS的应用将在市场分析、企业客户关系管理、银行、保险、人口统计、房地产开发、个人位置服务等领域得到广泛的应用,这些领域将是GIS产业发展的新的增长点。实际上,GIS的应用将加速度地深入人们的工作和生活的各个方面。GoogleEarth的流行就是GIS技术深入到日常生活每一个角落的明证。
由于地理信息在人类生活和国民经济中的重要作用,GIS在未来的几十年中将保持高速发展的势头,成为IT高科技领域的核心技术。
近几年来,随着移动通信技术的发展,GIS的应用范围迅速扩展到人们的日常生活中。集成GIS、GPS、GSM的技术已开始广泛应用于车辆安全防范系统和调度系统,为人们提供车辆反劫防盗、报警、道路指引、医疗救护以及在此系统平台基础上扩展各种电子商务增值服务。
以医疗救护为例,当患者向监控中心请求急救时,监控中心可以从GIS电子地图上查看到患者的具体位置,并同时搜索最近的急救车辆,让最近的车辆前去接患者。患者进入救护车后,监控中心可以通过双向通话功能,指导救护车上的医生实施救护治疗,同时通过GIS的最优路径功能,给救护车指引道路,使其以最快的速度到达医院或急救中心。而在救护车行进的过程中,患者的家属可以通过互联网立即上网查询救护车的行进位置及患者的状态信息。通过GIS,并结合GPS和GSM无线通信及网络,使患者、家属、救护车及医生之间建立了无缝沟通体系,最终使患者能得到快速、及时的治疗。
如果在车辆移动目标、家居固定点目标、重点保护单位甚至路灯上都安装了GPS、GSM或其他无线通信设备,那么我们在城市生活中,无论是开车、行走或者是在单位、在家里,都可以通过由GIS、GPS、互联网以及无线通信技术构成的综合服务系统获得急救、报警和各种商务服务,真正使我们处于立体的、全方位的数字化生活中,体验数字空间高科技价值。
GIS、RS、GPS等构成的空间信息技术将是未来发展最快的、最激动人心的领域之一,它结合通信及其他IT技术,为人类展现了一种全新的工作和生活模式(A.R.Mermut,H.Eswaran,2001)。当利用最新的GIS技术把城市、国家乃至整个地球都高度浓缩到计算机屏幕上的时候,人类对自己的命运和未来就有了更充分的把握。
(五)GIS与土地管理
GIS早已不限于地理学研究和应用的领域,目前已与各行各业和我们的日常生活产生了千丝万缕的联系,更重要的是它的应用领域还在不断扩大,甚至可触及企业信息化的过程中。
GIS应用于土壤科学的研究,它是现实世界的一个模型和模拟实现。土壤资源信息可以在GIS系统中进行存取、变换和对话式操作,作为土壤资源分类、评价、规划、管理与利用决策的依据,为土壤资源可持续利用服务。GIS应用于土壤学研究的各个方面,包括:①土壤制图技术及土壤采样技术;②土壤侵蚀预测与评价;③土壤资源污染与防治;④土壤养分流失评价;⑤土壤资源评价和管理;⑥作物生长模拟等。具体如1983年美国土壤保持局开发出农用土地评价和用地估计系统,系统中的农用土地评价包括土壤生产力的分等定级、土壤适宜性评价、土壤生产力潜力评价。1989年美国土壤保持局运用土壤信息系统保护土壤生态环境,控制土壤污染。1990年土壤侵蚀预测模型在土壤信息系统中已经能够成功运用,主要采用的分析手段有土壤侵蚀诺漠图、微机软件图、小溪河岸侵蚀诺漠图。
1.建立为农业生产服务的应用系统
如日本的农耕地土地资源信息系统,它包括了土壤信息系统、作物栽培试验信息系统、农业气象信息系统等子系统;保加利亚的计算机农业综合管理系统从20世纪80年代初开始运行。
进入20世纪90年代,GIS在土壤学研究领域的应用方面继续拓展,其作用和地位日益受到关注。从1994年开始的第15、16、17届国际土壤大会上持续讨论了土壤信息系统在持续农业和全球变化中的应用、土壤数据库的结构和联网等有关问题。同时,在应用上进一步趋向农业实际生产,直接服务于农场管理和经营,如进行农业技术咨询、牧场水源选点、作物生产管理、机械化施肥等方面。
中国的土壤工作者于20世纪80年代中期也开始进行土壤数据库建立、土壤信息系统的研制和应用工作。1986年底,北京大学遥感中心等主持了土壤侵蚀信息系统研究,建立了区域土壤侵蚀信息系统,这是我国较早关于土壤信息系统方面的研究。1989年,南京土壤研究所用两年时间研究了1∶50万东北三江平原土壤信息系统土壤图与数据库的建立;1990年,又研究了1∶5万江西红壤生态站土壤信息系统土壤侵蚀图;1991年,在“利用信息系统技术编制土壤退化图”研究中,应用从土壤土地数据库建立到土壤退化评价方法等一系列现代信息系统技术,编制出了实验区的土壤水蚀危害和风蚀评价图;1992年,又基本完成了海南岛土壤和土地利用信息库及信息系统制图工作。1991年,中国科学院沈阳应用生态研究所主持了“区域微机土壤信息系统的建立与应用”研究,在吉林省农安县的试验结果表明,这是一个简单但实用的土壤信息系统。1999年,胡月明等运用基本土壤数据库建立了红壤分类和评价的信息系统。
2.预测土壤空间变化及分布
由于GIS技术在土壤制图中的深入应用,怎样更准确地由有限的单个点位的土壤原始数据分析土壤属性的空间分布成为关注的焦点。具体来说,由于土壤数据库的信息来源于土壤分类、分色制图及制图的综合,产生了土壤空间分异类型的位移,而现代GIS技术又要求大量信息源,因此许多土壤科学家将兴趣集中到土壤空间变异性正确表达(即土壤图在GIS中的正确表达)的研究上。
(1)地形分析。Morre、Bourennane、Gessier和Oden等的研究均表明,某地区土壤属性与该地区的地形地貌特征和景观位置有明显的相关性,也就是与土壤的成土过程密切相关,可用下式表示:
中国耕地质量等级调查与评定(广东卷)
式中:
Si——土壤属性如土壤厚度、pH等;
i——由气候、母质、地貌历史、植被等因素决定的某地区海拔、坡度、坡形凹凸、水流长度和特定流域面积等原始地形数据可以通过一定精度的DEM计算出,复合地形数据,可以依经验判断或根据描述下垫面的物理发生过程的方程式进行简化。DEM可以由GIS技术生成,所以GIS的应用和地形分析可以提高土壤属性空间分布预测的精度。
(2)地质统计学与GIS的结合。GIS在存储、查询和显示地理数据方面发展得相当快,但在提供空间分析模块方面则发展得较慢。由于缺少通用的空间分析模块,使得GIS在解决某些空间问题中的应用受到很大的限制。
地质统计学是由南非矿山地质工程师D.G.Krige于1951年提出的,因此这一理论也以“克里格法”(Kriging)来命名,并由法国地质学家Dr.Matheron于1962年完善并创立。该学科在矿产储量研究方面起到了巨大作用。这是一种求最优、线形、无偏内插估计量值的方法(BLUE),在充分考虑信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构以后,利用变异函数(Varigram)为工具,对每一样品值分别赋予一定的权系数,加权平均来估计块段品位。
国内外土壤科学家已广泛地应用克里格法来预测非采样点的土壤属性,常用的方法有普通克里格法(OK)、泛克里格法(UK)、指示克里格法(IK)、协同克里格法(CK)、回归克里格法(RK)、点克里格法(PK)、块克里格法(BK)等。他们的研究还表明,在应用克里格法建立模型的时候,综合应用土壤和土地信息,如土壤分类、参比地区土壤属性、坡度、高程等,可以大大提高克里格法的插值精度,还可以降低由于测定大量样品而需要的成本,也可以减少由于样品点太少而带来的误差。我国从20世纪80年代开始利用克里格法研究土壤参数的空间变异性,2000年以后在这方面的报道已经越来越多。
近几年来,一些学者开始研究地质统计学和GIS之间的相互关系,并在GIS软件中提供一些空间分析功能。例如,美国圣巴巴拉NCGIA的SAN模型提供了在ArcGIS软件中计算和显示空间自相关和其他空间量的功能,二者的相互结合一方面可以大大加强GIS的分析功能,使大量数据所隐含的空间信息得以表达,发挥更大的作用;另一方面,也可以增强空间分析的能力。考虑到空间分析技术目前的发展十分迅速,新理论不断出现,空间分析模块已经成为GIS中的必选模块。
GIS技术的发展趋势
GIS在资源环境领域的应用方兴未艾,从技术、地理信息、经济社会的需求等方面分析,在该领域有以下趋势及建议:
应用软件数据端口应有专门化,专业化方向发展,在同类型同方向的GIS数据交流共享方向提供适当的方便,以解决GIS数据来源和数据质量难以保证的问题。
结合国家信息化推进工作,以电子政务相关工程为基础,推动GIS在资源环境管理中的推广应用。
信息化建设已成为我国各级 *** 及企业的重要任务,GIS在以资源、能源、生产、资金等空间综合配置、优化组合为目的的信息化建设中,可以发挥应有的作用;结合相应的应用工程,推动GIS的发展;
应用往专业化方向发展,功能由通用管理功能转向资源评估、监督、跟踪分析等专业功能方向发展。
随着经济社会的发展,经济社会与资源环境之间的各方面的矛盾及问题逐渐暴露出来,这些问题在时间和空间上具有诸多的关联性,分析这些问题、提出合理的解决方案建议,需要功能更专业化的GIS软件系统支持;
支持多源、多尺度、多类型集成应用的软件平台工具的开发应用。
信息获取技术的快速发展和多源化趋势,要求资源环境方面的GIS应能够接收、处理及分析多种来源、多尺度的地理信息;
促进3S技术集成应用,推动专业技术及软件的发展,全球定位系统、遥感技术与GIS的集成应用已成为GIS软件发展的趋势之一,而这种应用的发展是在应用推动的基础上建立的,针对特定的应用领域的集成化的GIS将成为资源环境领域GIS的发展方向,也是系统与业务结合的需要;
开展专业应用系统开发建设,结合资源环境各领域的需求,开发多种专业化的GIS,如针对性生态保护区、生态功能区、地下水、生物资源等领域的专业性GIS软件与管理系统。
国内GIS现状和对策
地理信息系统技术是一门综合性的技术,它的发展是与地理学、地图学、摄影测量学、遥感技术、数学和统计科学、信息技术等有关学科的发展分不开的。
GIS的发展可分为四个阶段:第一个阶段是初始发展阶段,20世纪60年代世界上第一个GIS系统由加拿大测量学家R.F.Tomlison提出并建立,主要用于自然资源的管理和规划;第二个阶段是发展巩固阶段,20世纪70年代由于计算机硬件和软件技术的飞速发展,尤其是大容量存储设备的使用,促进了GIS朝实用的方向发展,不同专题、不同规模、不同类型的各具特色的地理信息系统在世界各地纷纷付诸研制,如美国、英国、德国、瑞典和日本等国对GIS的研究都投入了大量的人力、物力和财力;第三个阶段是推广应用阶段,20世纪80年代,GIS逐步走向成熟,并在全世界范围内全面推广,应用领域不断扩大,并与卫星遥感技术结合,开始应用于全球性的问题,这个阶段涌现出一大批GIS软件,如ARC/INFO,GENAMAP,SPANS,MAPINFO,ERDAS,Microstation等;第四个阶段是蓬勃发展阶段,20世纪90年代,随着地理信息产品的建立和数字化信息产品在全世界的普及,GIS成为确定性的产业,并逐渐渗透到各行各业,成为人们生活、学习和工作不可缺少的工具和助手。
地理信息系统的研制与应用在我国起步较晚,虽然历史较短,但发展势头迅猛。
我国GIS的发展可分为三个阶段。
第一阶段从1970年到1980年,为准备阶段,主要经历了提出倡议、组建队伍、培训人才、组织个别实验研究等阶段。
机械制图和遥感应用,为GIS的研制和应用做了技术和理论上的准备。
第二阶段从1981年到1985年,为起步阶段,完成了技术引进、数据规范和标准的研究、空间数据库的建立、数据处理和分析算法及应用软件的开发等环节,对GIS进行了理论探索和区域性的实验研究。
第三个阶段从1986年到2013年,为初步发展阶段,我国GIS的研究和应用进入有组织、有计划、有目标的阶段,逐步建立了不同层次、不同规模的组织机构、研究中心和实验室。
GIS研究逐步与国民经济建设和社会生活需求相结合,并取得了重要进展和实际应用效益。
主要表现在四个方面:(1)制定了国家地理信息系统规范,解决信息共享和系统兼容问题,为全国地理信息系统的建立做准备。
(2)应用型GIS发展迅速。
(3)在引进的基础上扩充和研制了一批软件。
(4)开始出版有关地理信息系统理论、技术和应用等方面的书籍,设立了地理信息系统专业,培养了大批人才,并积极开展国际合作,参与全球性地理信息系统的讨论和实验。
在科技部等国家有关部门的大力组织和支持下,国产GIS基础软件开发工作取得了重要进展,出现了一批GIS高技术企业,开发出了较为成熟的国产GIS软件,如MapGIS、GeoStar、CityStar、SuperMap、MapEngine、GROW等,并形成了一定的产业规模。
这些国产GIS软件以较高的性价比,打破了国外GIS软件对我国市场的垄断,有力促进了我国地理信息系统技术的发展。
这些年,GIS技术在我国得到了广泛应用,其应用面从传统的城市规划、土地利用、测绘、环境保护、电力、电信、减灾防灾等领域渗透到矿产资源调查、海洋资源调查与管理等各方面,取得了丰硕的成果和巨大的经济效益。
当前,国家有关部门正逐步将GIS嵌入到电子政务系统中。
随着计算机和信息技术的快速发展,GIS技术得到了迅猛的发展。
GIS系统正朝着专业或大型化、社会化方向不断发展着。
“大型化”体现在系统和数据规模两个方面;“社会化”则要求GIS要面向整个社会,满足社会各界对有关地理信息的需求,简言之就是“开放数据”、“简化操作”,“面向服务”,通过网络实现从数据乃至系统之间的完全共享和互动。
下面我们从地理信息系统技术角度来讨论和分析当前GIS的相关技术及其发展趋势。
1.1 空间信息的获取、处理与交换地理空间数据是GIS的血液,构建和维护空间数据库是一项复杂、工作量巨大的工程,它包括:数据的获取、校验和规范化、结构化处理、数据维护等过程。
GIS处理的数据对象是空间对象,有很强的时空特性,获取数据的手段及数据的形式也复杂多样。
获取数据的基本方式有:野外全站仪平板测量、GPS测量、室内地图扫描数字化、数字摄影测量、从遥感影像进行目标测量和数据转换等。
这些获取技术已基本成熟。
同时,空间数据也具有很强的时效性,不同的空间数据必须进行周期不等的数据更新维护,空间数据库中数据的准确、及时、完整是实现GIS应用系统价值的前提基础。
空间数据维护往往涉及跨部门、跨行业的多种数据格式和多种数据类型的大量数据,提供有效的空间数据编辑更新手段是当前亟待解决的一个重要课题。
基于上述信息获取技术,在过去的二十年间,国家有关部委和行业部门已经积累了大量原始数字化数据和相应资料,建立了1100多个大、中型数据库以及大量的各类数字化地理基础图、专题图、城市地籍图等。
国家测绘局已经完成了全国l:100万、 1:25万基础地理空间数据库以及全国七大江河数字地形模型的建设,并启动了全国l:5万,部分省份1:1万基础地理空间数据库的建设。
这些基础数据有力促进了GIS技术的广泛应用,进而产生了大量的GIS数据。
但由于地理信息系统软件大多采用不同的空间数据模型,以及它们在地理实体上的认识差异,使得所积累的数据难以转换和共享(即使能够数据转换,也会产生信息的丢失),从而形成一个个新的数据孤岛。
制订数据交换的格式标准已成为大家的共识。
一些国家和组织已经在进行这方面的工作,并定义了一些数据交换标准,如SDTS,OpenGIS联盟制订的GML,另外一些公认的数据格式如DXF,Shapefile和MIF文件格式等正逐渐成为数据交换的事实标准。
我国也在“九五”期间制定了地球空间数据转换标准。
但是由于人们对空间信息认识和研究成果的制约,还没有一个统一的地理数据模型,因此建立实用的数据交换格式和信息标准将是一个长期、复杂过程。
1.2 空间数据的管理空间数据的管理涉及到二个方面的内容:空间数据模型和空间数据库。
空间数据模型刻画了现实世界中空间实体及其相互间的联系,它为空间数据的组织和空间数据库的设计提供了基本的方法。
因此,空间数据模型的研究对设计空间数据库和发展新一代GIS系统起着举足轻重的作用。
在GIS中与空间信息有关的信息模型有三个,即基于对象(要素)(Feature)的模型、场(Field)模型以及网络(Network)模型。
GIS基础软件平台的研制和应用系统的设计开发一直沿用这三种空间数据模型,但这些模型在空间实体间的相互关系及其时空变化的描述与表达、数据组织、空间分析等方面均有较大的局限性,难以满足新一代GIS基础软件平台和应用系统发展的要求。
主要表现为:(1) 仅能表达空间点、线、面目标间极为有限的简单拓扑关系,且这些拓扑关系的生成与维护耗时费力;(2) 难以有效地表达现实三维空间实体及其相互关系;(3) 适于记录和表达某一时刻空间实体性状及相互间关系静态分布,难以有效地描述和表达空间实体及其相互间关系的时空变化;(4) 没有考虑异地、异构、异质空间数据的互操作和分布式“对象”处理等问题。
针对上述不足,时空数据模型、三维数据模型、分布式空间数据管理、GIS设计的CASE工具等研究已成为当前国际上GIS空间数据模型研究的学术前沿。
GIS发展历史与发展趋势
经过了多年的发展,各行业对 GIS 的认识和掌握程度日益提高,GIS 本身的技术水平和软硬件设施也日臻完善,其综合性和先进性也得到充分体现,这使得 GIS 在资源环境和社会经济等领域得到了广泛应用,发挥了重大的作用。目前,GIS 应用领域已包括测绘、政府、建筑、地质、环保、农业、城乡规划、灾害监测等各个部门。
1. GIS 发展历史
回顾 GIS 发展的历史,可以归纳为三个发展阶段。20 世纪 50 年代中期到 80 年代后期,是 GIS 的开发时期,该阶段的 GIS 软件是以地图为基础进行单机、集中式处理,具有数据处理系统和管理信息系统初期设计的主要特点。80 年代末到 90 年代初是 GIS 第二个发展阶段,这一阶段 GIS 在快速发展的计算机硬件和软件支撑下得到了迅速发展,商品化GIS 软件正式进入传统的软件市场,并在各行业中得到广泛应用。90 年代中后期以来,是GIS 的第三个重要的发展历史时期,此时 GIS 普遍采用了面向对象的软件技术,极大提高了 GIS 的二次开发能力,实现了空间数据和属性数据的一体化存储。在此基础上还逐渐形成了 “3S”技术集成,在一定程度上实现了矢量数据、图像数据一体化存储、叠加和矢量-栅格数据的相互转化。
在地学应用方面,GIS 发展主要经历了以下几个阶段: 20 世纪 70 年代末,一些数学地质专家、遥感地质专家、计算机地学处理专家积极开展了这方面应用工作; 80 年代中后期,GIS 的地学应用特别是矿产资源评价预测处于实验成熟期; 进入 90 年代,GIS 在地学和其他领域得到空前广泛应用; 90 年代初期,美国矿产资源评价预测广泛应用了包括GIS 在内的计算机信息处理技术,90 年代中后期,GIS 在矿产预测方面采用了多种数学模型,如模糊逻辑法、代数法、神经网络法,这些工作极大地推动和丰富了地学研究与 GIS的结合。
2. GIS 未来发展趋势
从系统角度看,在未来的几十年内,GIS 将向着数据标准化 ( Interoperable GIS) 、数据多维化 ( 3D/4D GIS) 、系统集成化 ( Component GIS) 、平台网络化 ( Web GIS) 和应用社会化 ( 数字地球,DE) 的方向发展。
互操作地理信息系统 ( Interoperable GIS) 是 GIS 系统集成平台,它实现在异构环境下多个地理信息的系统或其应用系统之间的互相通信和协作,以完成某一特定任务。
三维或四维地理信息系统 ( 3D/4D GIS) 是从以往静态的二维 GIS 模型向三维、四维、甚至多维的动态模型转换,从而实现利用 GIS 表达世界真三维空间数据场。目前 3DGIS 已开始应用于许多行业中,如矿山三维 GIS 的构建,地质构造模型的三维可视化,城市三维景观制作,三维可视化在固体矿产中的应用,三维可视化在地震解释中的应用,三维 GIS 在地质灾害中的应用,三维 GIS 在数字区调中的应用等。
Com GIS ( Component GIS) 是面向对象和构件技术的地理信息系统,是把 GIS 的功能模块划分为多个控件,每个控件完成不同的功能,通过可视化的软件开发工具集成起来,形成最终 GIS 应用。
Web GIS 是 Internet 和 WWW 技术应用于 GIS 开发的产物,是实现 GIS 互操作的一条最佳解决途径。从 Internet 的任意节点,用户都可以浏览 Web GIS 站点中的空间数据,制作专题图,进行各种空间信息检索和空间分析。随着 Internet 的飞速发展,Web GIS 的发展更加广阔,它改变了 GIS 数据及应用的访问和传输方式,使 GIS 真正变成了大众使用的工具。
数字地球 ( DE) 是对真实地球及其相关现象统一性的数字化重现和认识,其核心思想是用数字化手段统一处理地球问题和最大限度地利用信息资源。数字地球是 GIS 的延伸,建立数字地球的核心技术包括 GIS 与数据库、遥感、遥测、信息技术等。遥感、遥测技术用来完成数据采集、处理和识别,GIS 和数据库技术用于完成数据存储、检索、集成、融合、综合和分析,从而完成数字地球的核心功能,光缆、卫星通信技术以及计算机网络等技术则完成海量空间数据的传输任务。
分享文章:gis技术的使用日渐成熟 举例说明gis技术是如何应用的?
文章地址:http://pcwzsj.com/article/dohoide.html