tanh函数python tanh函数的反函数
tanh是什么函数
原型:extern float tanh(float x);
成都创新互联主营蓟州网站建设的网络公司,主营网站建设方案,app软件开发公司,蓟州h5成都小程序开发搭建,蓟州网站营销推广欢迎蓟州等地区企业咨询
用法:#include math.h
功能:求x的双曲正切值
说明:tanh(x)=(e^x-e^(-x))/(e^2+e^(-x))
举例:
// tanh.c
#include syslib.h
#include math.h
main()
{
float x;
clrscr(); // clear screen
textmode(0x00); // 6 lines per LCD screen
x=PI/4.;
printf("tanh(%.4f)=%.4f\n",x,tanh(x));
getchar();
return 0;
}
Python--math库
Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。
使用dir函数,查看math库中包含的所有内容:
1) math.pi # 圆周率π
2) math.e #自然对数底数
3) math.inf #正无穷大∞,-math.inf #负无穷大-∞
4) math.nan #非浮点数标记,NaN(not a number)
1) math.fabs(x) #表示X值的绝对值
2) math.fmod(x,y) #表示x/y的余数,结果为浮点数
3) math.fsum([x,y,z]) #对括号内每个元素求和,其值为浮点数
4) math.ceil(x) #向上取整,返回不小于x的最小整数
5)math.floor(x) #向下取整,返回不大于x的最大整数
6) math.factorial(x) #表示X的阶乘,其中X值必须为整型,否则报错
7) math.gcd(a,b) #表示a,b的最大公约数
8) math.frexp(x) #x = i *2^j,返回(i,j)
9) math.ldexp(x,i) #返回x*2^i的运算值,为math.frexp(x)函数的反运算
10) math.modf(x) #表示x的小数和整数部分
11) math.trunc(x) #表示x值的整数部分
12) math.copysign(x,y) #表示用数值y的正负号,替换x值的正负号
13) math.isclose(a,b,rel_tol =x,abs_tol = y) #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。
14) math.isfinite(x) #表示当x不为无穷大时,返回True,否则返回False
15) math.isinf(x) #当x为±∞时,返回True,否则返回False
16) math.isnan(x) #当x是NaN,返回True,否则返回False
1) math.pow(x,y) #表示x的y次幂
2) math.exp(x) #表示e的x次幂
3) math.expm1(x) #表示e的x次幂减1
4) math.sqrt(x) #表示x的平方根
5) math.log(x,base) #表示x的对数值,仅输入x值时,表示ln(x)函数
6) math.log1p(x) #表示1+x的自然对数值
7) math.log2(x) #表示以2为底的x对数值
8) math.log10(x) #表示以10为底的x的对数值
1) math.degrees(x) #表示弧度值转角度值
2) math.radians(x) #表示角度值转弧度值
3) math.hypot(x,y) #表示(x,y)坐标到原点(0,0)的距离
4) math.sin(x) #表示x的正弦函数值
5) math.cos(x) #表示x的余弦函数值
6) math.tan(x) #表示x的正切函数值
7)math.asin(x) #表示x的反正弦函数值
8) math.acos(x) #表示x的反余弦函数值
9) math.atan(x) #表示x的反正切函数值
10) math.atan2(y,x) #表示y/x的反正切函数值
11) math.sinh(x) #表示x的双曲正弦函数值
12) math.cosh(x) #表示x的双曲余弦函数值
13) math.tanh(x) #表示x的双曲正切函数值
14) math.asinh(x) #表示x的反双曲正弦函数值
15) math.acosh(x) #表示x的反双曲余弦函数值
16) math.atanh(x) #表示x的反双曲正切函数值
1)math.erf(x) #高斯误差函数
2) math.erfc(x) #余补高斯误差函数
3) math.gamma(x) #伽马函数(欧拉第二积分函数)
4) math.lgamma(x) #伽马函数的自然对数
怎样用python构建一个卷积神经网络?
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
1、#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
import numpy as np
np.random.seed(1024) # for reproducibility
2、。#打乱数据
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ' samples')
#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
3、#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
4、全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
网站标题:tanh函数python tanh函数的反函数
分享链接:http://pcwzsj.com/article/dogpcoj.html