mysql慢查询怎么优化 mysql查询慢的优化方案
如果mysql里面的数据过多,查询太慢怎么办?
问题
创新互联专注于石首企业网站建设,响应式网站开发,商城开发。石首网站建设公司,为石首等地区提供建站服务。全流程按需求定制网站,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务
我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?
实验
我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。
写个简单的脚本,制造一批带主键和不带主键的表:
执行一下脚本:
现在执行以下 SQL 看看效果:
...
执行了 16.80s,感觉是非常慢了。
现在用一下 DBA 三板斧,看看执行计划:
感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。
那我们来 show warnings 看看 MySQL 改写后的 SQL:
我们格式化一下 SQL:
可以看到 MySQL 将
select from A where A.x not in (select x from B) //非关联子查询
转换成了
select from A where not exists (select 1 from B where B.x = a.x) //关联子查询
如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:
select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,
而关联子查询就需要循环迭代:
select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的第一条满足 rA 条件的记录。
显然,关联子查询的扫描成本会高于非关联子查询。
我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。
...
可以看到执行时间变成了 0.67s。
整理
我们诊断的关键点如下:
\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。
\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。
\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。
但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。
MySQL中如何查看“慢查询”,如何分析执行SQL的效率?
一、MySQL数据库有几个配置选项可以帮助我们及时捕获低效SQL语句\x0d\x0a\x0d\x0a1,slow_query_log\x0d\x0a这个参数设置为ON,可以捕获执行时间超过一定数值的SQL语句。\x0d\x0a\x0d\x0a2,long_query_time\x0d\x0a当SQL语句执行时间超过此数值时,就会被记录到日志中,建议设置为1或者更短。\x0d\x0a\x0d\x0a3,slow_query_log_file\x0d\x0a记录日志的文件名。\x0d\x0a\x0d\x0a4,log_queries_not_using_indexes\x0d\x0a这个参数设置为ON,可以捕获到所有未使用索引的SQL语句,尽管这个SQL语句有可能执行得挺快。\x0d\x0a\x0d\x0a二、检测mysql中sql语句的效率的方法\x0d\x0a\x0d\x0a1、通过查询日志\x0d\x0a(1)、Windows下开启MySQL慢查询\x0d\x0aMySQL在Windows系统中的配置文件一般是是my.ini找到[mysqld]下面加上\x0d\x0a代码如下\x0d\x0alog-slow-queries = F:/MySQL/log/mysqlslowquery。log\x0d\x0along_query_time = 2\x0d\x0a\x0d\x0a(2)、Linux下启用MySQL慢查询\x0d\x0aMySQL在Windows系统中的配置文件一般是是my.cnf找到[mysqld]下面加上\x0d\x0a代码如下\x0d\x0alog-slow-queries=/data/mysqldata/slowquery。log\x0d\x0along_query_time=2\x0d\x0a说明\x0d\x0alog-slow-queries = F:/MySQL/log/mysqlslowquery。\x0d\x0a为慢查询日志存放的位置,一般这个目录要有MySQL的运行帐号的可写权限,一般都将这个目录设置为MySQL的数据存放目录;\x0d\x0along_query_time=2中的2表示查询超过两秒才记录;\x0d\x0a\x0d\x0a2.show processlist 命令\x0d\x0a\x0d\x0aSHOW PROCESSLIST显示哪些线程正在运行。您也可以使用mysqladmin processlist语句得到此信息。\x0d\x0a各列的含义和用途:\x0d\x0aID列\x0d\x0a一个标识,你要kill一个语句的时候很有用,用命令杀掉此查询 /*/mysqladmin kill 进程号。\x0d\x0auser列\x0d\x0a显示单前用户,如果不是root,这个命令就只显示你权限范围内的sql语句。\x0d\x0ahost列\x0d\x0a显示这个语句是从哪个ip的哪个端口上发出的。用于追踪出问题语句的用户。\x0d\x0adb列\x0d\x0a显示这个进程目前连接的是哪个数据库。\x0d\x0acommand列\x0d\x0a显示当前连接的执行的命令,一般就是休眠(sleep),查询(query),连接(connect)。\x0d\x0atime列\x0d\x0a此这个状态持续的时间,单位是秒。\x0d\x0astate列\x0d\x0a显示使用当前连接的sql语句的状态,很重要的列,后续会有所有的状态的描述,请注意,state只是语句执行中的某一个状态,一个 sql语句,以查询为例,可能需要经过copying to tmp table,Sorting result,Sending data等状态才可以完成\x0d\x0ainfo列\x0d\x0a显示这个sql语句,因为长度有限,所以长的sql语句就显示不全,但是一个判断问题语句的重要依据。\x0d\x0a\x0d\x0a这个命令中最关键的就是state列,mysql列出的状态主要有以下几种:\x0d\x0aChecking table\x0d\x0a 正在检查数据表(这是自动的)。\x0d\x0aClosing tables\x0d\x0a 正在将表中修改的数据刷新到磁盘中,同时正在关闭已经用完的表。这是一个很快的操作,如果不是这样的话,就应该确认磁盘空间是否已经满了或者磁盘是否正处于重负中。\x0d\x0aConnect Out\x0d\x0a 复制从服务器正在连接主服务器。\x0d\x0a\x0d\x0aCopying to tmp table on disk\x0d\x0a 由于临时结果集大于tmp_table_size,正在将临时表从内存存储转为磁盘存储以此节省内存。\x0d\x0aCreating tmp table\x0d\x0a 正在创建临时表以存放部分查询结果。\x0d\x0adeleting from main table\x0d\x0a 服务器正在执行多表删除中的第一部分,刚删除第一个表。\x0d\x0adeleting from reference tables\x0d\x0a 服务器正在执行多表删除中的第二部分,正在删除其他表的记录。\x0d\x0a\x0d\x0aFlushing tables\x0d\x0a 正在执行FLUSH TABLES,等待其他线程关闭数据表。\x0d\x0aKilled\x0d\x0a 发送了一个kill请求给某线程,那么这个线程将会检查kill标志位,同时会放弃下一个kill请求。MySQL会在每次的主循环中检查kill标志位,不过有些情况下该线程可能会过一小段才能死掉。如果该线程程被其他线程锁住了,那么kill请求会在锁释放时马上生效。\x0d\x0aLocked\x0d\x0a 被其他查询锁住了。\x0d\x0aSending data\x0d\x0a 正在处理SELECT查询的记录,同时正在把结果发送给客户端。\x0d\x0a\x0d\x0aSorting for group\x0d\x0a 正在为GROUP BY做排序。\x0d\x0a Sorting for order\x0d\x0a 正在为ORDER BY做排序。\x0d\x0aOpening tables\x0d\x0a 这个过程应该会很快,除非受到其他因素的干扰。例如,在执ALTER TABLE或LOCK TABLE语句行完以前,数据表无法被其他线程打开。正尝试打开一个表。\x0d\x0aRemoving duplicates\x0d\x0a 正在执行一个SELECT DISTINCT方式的查询,但是MySQL无法在前一个阶段优化掉那些重复的记录。因此,MySQL需要再次去掉重复的记录,然后再把结果发送给客户端。\x0d\x0a\x0d\x0aReopen table\x0d\x0a 获得了对一个表的锁,但是必须在表结构修改之后才能获得这个锁。已经释放锁,关闭数据表,正尝试重新打开数据表。\x0d\x0aRepair by sorting\x0d\x0a 修复指令正在排序以创建索引。\x0d\x0aRepair with keycache\x0d\x0a 修复指令正在利用索引缓存一个一个地创建新索引。它会比Repair by sorting慢些。\x0d\x0aSearching rows for update\x0d\x0a 正在讲符合条件的记录找出来以备更新。它必须在UPDATE要修改相关的记录之前就完成了。\x0d\x0aSleeping\x0d\x0a 正在等待客户端发送新请求.\x0d\x0a\x0d\x0aSystem lock\x0d\x0a 正在等待取得一个外部的系统锁。如果当前没有运行多个mysqld服务器同时请求同一个表,那么可以通过增加--skip-external-locking参数来禁止外部系统锁。\x0d\x0aUpgrading lock\x0d\x0a INSERT DELAYED正在尝试取得一个锁表以插入新记录。\x0d\x0aUpdating\x0d\x0a 正在搜索匹配的记录,并且修改它们。\x0d\x0a\x0d\x0aUser Lock\x0d\x0a 正在等待GET_LOCK()。\x0d\x0aWaiting for tables\x0d\x0a 该线程得到通知,数据表结构已经被修改了,需要重新打开数据表以取得新的结构。然后,为了能的重新打开数据表,必须等到所有其他线程关闭这个表。以下几种情况下会产生这个通知:FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE,或OPTIMIZE TABLE。\x0d\x0awaiting for handler insert\x0d\x0a INSERT DELAYED已经处理完了所有待处理的插入操作,正在等待新的请求。\x0d\x0a 大部分状态对应很快的操作,只要有一个线程保持同一个状态好几秒钟,那么可能是有问题发生了,需要检查一下。\x0d\x0a 还有其他的状态没在上面中列出来,不过它们大部分只是在查看服务器是否有存在错误是才用得着。\x0d\x0a\x0d\x0a例如如图:\x0d\x0a\x0d\x0a3、explain来了解SQL执行的状态\x0d\x0aexplain显示了mysql如何使用索引来处理select语句以及连接表。可以帮助选择更好的索引和写出更优化的查询语句。\x0d\x0a使用方法,在select语句前加上explain就可以了:\x0d\x0a例如:\x0d\x0aexplain select surname,first_name form a,b where a.id=b.id\x0d\x0a结果如图\x0d\x0a\x0d\x0aEXPLAIN列的解释\x0d\x0atable\x0d\x0a显示这一行的数据是关于哪张表的\x0d\x0atype\x0d\x0a这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和ALL\x0d\x0apossible_keys\x0d\x0a显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从WHERE语句中选择一个合适的语句\x0d\x0akey\x0d\x0a实际使用的索引。如果为NULL,则没有使用索引。很少的情况下,MYSQL会选择优化不足的索引。这种情况下,可以在SELECT语句 中使用USE INDEX(indexname)来强制使用一个索引或者用IGNORE INDEX(indexname)来强制MYSQL忽略索引\x0d\x0akey_len\x0d\x0a使用的索引的长度。在不损失精确性的情况下,长度越短越好\x0d\x0aref\x0d\x0a显示索引的哪一列被使用了,如果可能的话,是一个常数\x0d\x0arows\x0d\x0aMYSQL认为必须检查的用来返回请求数据的行数\x0d\x0aExtra\x0d\x0a关于MYSQL如何解析查询的额外信息。将在表4.3中讨论,但这里可以看到的坏的例子是Using temporary和Using filesort,意思MYSQL根本不能使用索引,结果是检索会很慢\x0d\x0a\x0d\x0aextra列返回的描述的意义\x0d\x0aDistinct\x0d\x0a一旦MYSQL找到了与行相联合匹配的行,就不再搜索了\x0d\x0aNot exists\x0d\x0aMYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,就不再搜索了\x0d\x0aRange checked for each Record(index map:#)\x0d\x0a没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一\x0d\x0aUsing filesort\x0d\x0a看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行\x0d\x0aUsing index\x0d\x0a列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候\x0d\x0aUsing temporary\x0d\x0a看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上\x0d\x0aWhere used\x0d\x0a使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题不同连接类型的解释(按照效率高低的顺序排序)\x0d\x0aconst\x0d\x0a表中的一个记录的最大值能够匹配这个查询(索引可以是主键或惟一索引)。因为只有一行,这个值实际就是常数,因为MYSQL先读这个值然后把它当做常数来对待\x0d\x0aeq_ref\x0d\x0a在连接中,MYSQL在查询时,从前面的表中,对每一个记录的联合都从表中读取一个记录,它在查询使用了索引为主键或惟一键的全部时使用\x0d\x0aref\x0d\x0a这个连接类型只有在查询使用了不是惟一或主键的键或者是这些类型的部分(比如,利用最左边前缀)时发生。对于之前的表的每一个行联合,全部记录都将从表中读出。这个类型严重依赖于根据索引匹配的记录多少—越少越好\x0d\x0arange\x0d\x0a这个连接类型使用索引返回一个范围中的行,比如使用或
回答于 2022-11-16
mysql数据库表太大查询慢优化的几种方法
优化方案:
主从同步+读写分离:
这个表在有设备条件的情况下,读写分离,这样能减少很多压力,而且数据稳定性也能提高
纵向分表:
根据原则,每个表最多不要超过5个索引,纵向拆分字段,将部分字段拆到一个新表
通常我们按以下原则进行垂直拆分:(先区分这个表中的冷热数据字段)
把不常用的字段单独放在一张表;
把text,blob等大字段拆分出来放在附表中;
经常组合查询的列放在一张表中;
缺点是:很多逻辑需要重写,带来很大的工作量。
利用表分区:
这个是推荐的一个解决方案,不会带来重写逻辑等,可以根据时间来进行表分区,相当于在同一个磁盘上,表的数据存在不同的文件夹内,能够极大的提高查询速度。
横向分表:
1000W条数据不少的,会带来一些运维压力,备份的时候,单表备份所需时间会很长,所以可以根据服务器硬件条件进行水平分表,每个表有多少数据为准。
MySQL查询效率很慢的问题如何分析和解决
MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
Mysql 查询速度慢怎么办
问题
我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?
实验
我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。
写个简单的脚本,制造一批带主键和不带主键的表:
执行一下脚本:
现在执行以下 SQL 看看效果:
...
执行了 16.80s,感觉是非常慢了。
现在用一下 DBA 三板斧,看看执行计划:
感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。
那我们来 show warnings 看看 MySQL 改写后的 SQL:
我们格式化一下 SQL:
可以看到 MySQL 将
select from A where A.x not in (select x from B) //非关联子查询
转换成了
select from A where not exists (select 1 from B where B.x = a.x) //关联子查询
如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:
select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,
而关联子查询就需要循环迭代:
select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA: 扫描 B 表,找到其中的第一条满足 rA 条件的记录。
显然,关联子查询的扫描成本会高于非关联子查询。
我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。
...
可以看到执行时间变成了 0.67s。
整理
我们诊断的关键点如下:
\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。
\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。
\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。
但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。
MySQL删除千万级数据量导致的慢查询优化
有人删了千万级的数据,结果导致频繁的慢查询。
线上收到大量慢查询告警,于是检查慢查询的SQL,发现不是啥复杂SQL,这些SQL主要针对一个表,基本都是单行查询,看起来应该不会有慢查询。这种SQL基本上都是直接根据索引查找出来的,性能应该极高。
是否可能慢查询不是SQL问题,而是MySQL生产服务器的问题?特殊情况下,MySQL出现慢查询还真不是SQL问题,而是他自己生产服务器的负载太高,导致SQL语句执行慢。比如现在MySQL服务器的
磁盘I/O负载高,每秒执行大量高负载的随机I/O,但磁盘本身每秒能执行的随机I/O有限,导致正常SQL在磁盘执行时,若跑一些随机IO,你的磁盘太忙,顾不上你了,导致你本来很快的一个SQL,要等很久才能执行完毕,这时就可能导致正常SQL也变成慢查询。
也许网络负载高,导致你一个SQL语句要发到MySQL,光是等待获取一个和MySQL的连接,都很难,要等很久或MySQL自己网络负载太高,带宽打满,带宽打满后,你一个SQL也许执行很快,但其查出来的数据返回给你,网络都送不出去,也会变成慢查询。
若CPU负载过高,也会导致CPU过于繁忙去执行别的任务,没时间执行你的SQL。
所以慢查询不一定是SQL本身导致,若觉得SQL不应该会慢查询,结果他那个时间段跑这个SQL 就是慢,应排查当时MySQL服务器的负载,尤其看看磁盘、网络及 CPU 的负载,是否正常。
当某个离线作业瞬间大批量把数据往MySQL里灌入的时,他一瞬间服务器磁盘、网络以及CPU的负载会超高。
此时你一个正常SQL执行下去,短时间内一定会慢查询,类似问题,优化手段更多是控制你导致MySQL负载过高的那些行为,比如灌入大量数据,最好在业务低峰期灌入,别影响高峰期的线上系统运行。
但看了下MySQL服务器的磁盘、网络以及CPU负载,一切正常,似乎也不是这问题导致。看起来无解了?
慢 SQL 的头两步排查手段:
这两种办法都不奏效之后,第三步:用MySQL profilling工具去细致的分析SQL语句的执行过程和耗时。
这个工具可以对SQL语句的执行耗时进行非常深入和细致的分析
打开profiling,使用
接着MySQL就会自动记录查询语句的profiling信息。此时若执行show profiles,就会给你列出各种查询语句的profiling信息,会记录下来每个查询语句的query id,所以你要针对你需要分析的query找到对他的query id,我们当时就是针对慢查询的那个SQL语句找到了query id。
然后针对单个查询语句,看其profiling信息,使用show profile cpu, block io for query xx,这里的xx是数字,此时就可以看到具体的profile信息。
除了cpu以及block io以外,还能指定去看这个SQL语句执行时候的其他各项负载和耗时。
会给你展示出来SQL语句执行时候的各种耗时,比如磁盘IO的耗时,CPU等待耗时,发送数据耗时,拷贝数据到临时表的耗时等,SQL执行过程中的各种耗时都会展示。
检查该SQL语句的profiling信息后,发现问题,其Sending Data耗时最高,几乎使用1s,占据SQL执行耗时的99%!其他环节耗时低可以理解,毕竟这种简单SQL执行速度真的很快,基本就是10ms级别,结果跑成1s,那肯定Sending Data就是问题根源!
这Sending Data在干啥呢?
MySQL官方释义:为一个SELECT语句读取和处理数据行,同时发送数据给客户端的过程,简单来说就是为你的SELECT语句把数据读出来,同时发送给客户端。
但这过程为啥这么慢?profiling确实是提供给我们更多的线索了,但似乎还是没法解决问题。但已经捕获到异常关键点,就是Sending Data的耗时很高!
接着:
看innodb存储引擎的一些状态,此时发现一个奇怪的指标:history list length,值特别高,达到上万。
MVCC就是多个事务在对同一个数据, 有人写,有人读,此时可以有多种隔离级别,对一个数据有个多版本快照链条,才能实现MVCC和各种隔离级别。
所以当你有大量事务执行时,就会构建这种undo多版本快照链条,此时history list length就会很高。然后在事务提交后,会有一个多版本快照链条的自动purge清理机制,清理了,该值就会降低。一般该值不应过高,所以注意到第二个线索:history list length过高,即大量的undo多版本链条数据没有清理。推测可能有的事务长时间运行,所以其多版本快照不能被purge清理,进而导致history list length过高。
经过这俩线索推测,在大量简单SQL变成慢查询时,SQL因为Sending Data环节异常,耗时过高;同时此时出现一些长事务长时间运行,大量的频繁更新数据,导致有大量undo多版本快照链条,还无法purge清理。
因为发现有大量的更新语句在活跃,而且有那种长期活跃的长事务一直在跑而没有结束,问了下系统负责人,在后台跑了个定时任务:他居然开了一个事务,然后在一个事务里删除上千万数据,导致该事务一直在运行。
这种长事务的运行会导致你删除时,仅只是对数据加了一个删除标记,事实上并没有彻底删除。此时你若和长事务同时运行的其它事务里再查询,他在查询时可能会把那上千万被标记为删除的数据都扫描一遍。因为每次扫描到一批数据,都发现标记为删除了,接着就会再继续往下扫描,所以才导致一些查询语句很慢。
那为何你启动一个事务,在事务里查询,凭什么就要去扫描之前那个长事务标记为删除状态的上千万的垃圾数据?讲道理,那些数据都被删了,跟你没关系了呀,你可以不去扫描他们 嘛!
而问题症结在于,那个 删除千万级数据的事务是个长事务 !即当你启动新事务查询时,那个删除千万级数据的长事务一直在运行,它是活跃的!结合MVCC的Read View机制,当你启动一个新事务查询时,会生成一个Read View。你的新事务查询时,会根据ReadView去判断哪些数据可见及可见的数据版本号,因为每个数据都有个版本链条,有时你能可见的仅是这个数据的一个 历史 版本。
所以正是因为该长事务一直在运行,还在删除大量数据,而且这些数据仅是逻辑删除,所以此时你新开事务的查询还是会读到所有逻辑删除数据,也就会出现千万级的数据扫描,导致了慢查询!
所以禁止在业务高峰期运行那种删除大量数据的语句,因为这可能导致一些正常的SQL都变慢查询,因为那些SQL也许会不断扫描你标记为删除的大量数据,好不容易扫描到一批数据,结果发现是标记为删除的,于是继续扫描下去,导致慢查询!
直接kill那个正在删除千万级数据的长事务,所有SQL很快恢复正常。此后,大量数据清理全部放在凌晨执行,那个时候就没什么人使用系统了,所以查询也很少。
网页题目:mysql慢查询怎么优化 mysql查询慢的优化方案
分享网址:http://pcwzsj.com/article/dodhpep.html