go语言异步队列 go语言开发的消息队列
Golang kafka简述和操作(sarama同步异步和消费组)
一、Kafka简述
创新互联服务项目包括新华网站建设、新华网站制作、新华网页制作以及新华网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,新华网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到新华省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
1. 为什么需要用到消息队列
异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;
解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。
缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。
2.为什么选择kafka呢?
这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文
kafka的优点:
1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群
kafka的缺点:
1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高
3. Golang 操作kafka
3.1. kafka的环境
网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件
3.2. 第三方库
github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组
3.3. 消费者
单个消费者
funcconsumer(){varwg sync.WaitGroup consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{ fmt.Println("Failed to start consumer: %s", err)return} partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{ fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList { pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{ fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return} wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value)) }deferpc.AsyncClose() wg.Done() }(pc) } wg.Wait()}funcmain(){ consumer()}
消费组
funcconsumerCluster(){ groupID :="group-1"config := cluster.NewConfig() config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{ glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){ errors := c.Errors() noti := c.Notifications()for{select{caseerr := -errors: glog.Errorln(err)case-noti: } } }(c)formsg :=rangec.Messages() { fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value)) c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}
3.4. 生产者
同步生产者
packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){ config := sarama.NewConfig() config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{} msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!") client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{ fmt.Println("producer close err, ", err)return}deferclient.Close() pid, offset, err := client.SendMessage(msg)iferr !=nil{ fmt.Println("send message failed, ", err)return} fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}
异步生产者
funcasyncProducer(){ config := sarama.NewConfig() config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){ errors := p.Errors() success := p.Successes()for{select{caseerr := -errors:iferr !=nil{ glog.Errorln(err) }case-success: } } }(p)for{ v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000)) fmt.Fprintln(os.Stdout, v) msg := sarama.ProducerMessage{ Topic: topics, Value: sarama.ByteEncoder(v), } p.Input() - msg time.Sleep(time.Second *1) }}funcmain(){goasyncProducer()select{ }}
3.5. 结果展示-
同步生产打印:
分区ID:0,offset:90
消费打印:
Partition:0,Offset:90,key:,value:Hello World!
异步生产打印:
async:7272async:7616async:998
消费打印:
Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998
如何用go语言实现数据结构中的队列数据类型
你的代码是想把front到rear的值全部输出
但是你下面的操作自己检查一下没有改变front的值,也没有改变rear的值,所以front!=rear是死循环
如果好一点的话
void printQueue(LinkQueue *Q)/*依次输出队列*/
{
if(Q-front==Q-rear)
{
printf("队列为空");
exit(1);
}
while(Q-front!=Q-rear)/*老师告诉我说是这里的while是死循环,为什么是死循环呢,不是很懂,请细说。请帮我改为正确的代码,谢谢。*/
{
printf("%d, ", Q-front-data);
Q-front=Q-front-next;
}
//exit(0);
}试试可不可以,不行再追问
golang怎么使用redis,最基础的有效的方法
应用Redis实现数据的读写,同时利用队列处理器定时将数据写入mysql。同时要注意避免冲突,在redis启动时去mysql读取所有表键值存入redis中,往redis写数据时,对redis主键自增并进行读取,若mysql更新失败,则需要及时清除缓存及同步redis主键。这样处理,主要是实时读写redis,而mysql数据则通过队列异步处理,缓解mysql压力,不过这种方法应用场景主要基于高并发,而且redis的高可用集群架构相对更复杂,一般不是很推荐。
go语言循环队列的实现
队列的概念在 顺序队列 中,而使用循环队列的目的主要是规避假溢出造成的空间浪费,在使用循环队列处理假溢出时,主要有三种解决方案
本文提供后两种解决方案。
顺序队和循环队列是一种特殊的线性表,与顺序栈类似,都是使用一组地址连续的存储单元依次存放自队头到队尾的数据元素,同时附设队头(front)和队尾(rear)两个指针,但我们要明白一点,这个指针并不是指针变量,而是用来表示数组当中元素下标的位置。
本文使用切片来完成的循环队列,由于一开始使用三个参数的make关键字创建切片,在输出的结果中不包含nil值(看起来很舒服),而且在验证的过程中发现使用append()函数时切片内置的cap会发生变化,在消除了种种障碍后得到了一个四不像的循环队列,即设置的指针是顺序队列的指针,但实际上进行的操作是顺序队列的操作。最后是对make()函数和append()函数的一些使用体验和小结,队列的应用放在链队好了。
官方描述(片段)
即切片是一个抽象层,底层是对数组的引用。
当我们使用
构建出来的切片的每个位置的值都被赋为interface类型的初始值nil,但是nil值也是有大小的。
而使用
来进行初始化时,虽然生成的切片中不包含nil值,但是无法通过设置的指针变量来完成入队和出队的操作,只能使用append()函数来进行操作
在go语言中,切片是一片连续的内存空间加上长度与容量的标识,比数组更为常用。使用 append 关键字向切片中追加元素也是常见的切片操作
正是基于此,在使用go语言完成循环队列时,首先想到的就是使用make(type, len, cap)关键字方式完成切片初始化,然后使用append()函数来操作该切片,但这一方式出现了很多问题。在使用append()函数时,切片的cap可能会发生变化,用不好就会发生扩容或收缩。最终造成的结果是一个四不像的结果,入队和出队操作变得与指针变量无关,失去了作为循环队列的意义,用在顺序队列还算合适。
参考博客:
Go语言中的Nil
Golang之nil
Go 语言设计与实现
golang使用Nsq
1. 介绍
最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。
官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。
1.1 Features
1). Distributed
NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。
2). Scalable易于扩展
NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。
3). Ops Friendly
NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。
4.Integrated高度集成
官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。
1.2 组件
1.3 拓扑结构
NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。
NSQ
首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。
事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。
nsqd
每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。
nsqlookupd
2. Internals
2.1 消息传递担保
1)客户表示已经准备好接收消息
2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)
3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息
这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。
如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。
2.2 简化配置和管理
单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。
在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。
2.3 消除单点故障
NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。
这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。
2.4 效率
对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。
efficiency
2.5 心跳和超时
组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。
2.6 分布式
因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。
这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。
2.7 no replication
不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。
2.8 没有严格的顺序
虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。
2.9 无数据重复删除功能
NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。
3. 实践安装过程
本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。
3.1 拓扑结构
topology
实验采用3台NSQD服务,2台LOOKUPD服务。
采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。
NSQ基本没有配置文件,配置通过命令行指定参数。
主要命令如下:
LOOKUPD命令
NSQD命令
工具类,消费后存储到本地文件。
发布一条消息
3.2 nsqadmin
对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。
nsqadmin
channel
列出所有的NSQD节点:
nodes
消息的统计:
msgs
lookup主机的列表:
hosts
4. 总结
NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。
事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。
结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。
Go语言使用NSQ消息队列
重点提示:
这样我们就启动了一个 nsqd 的实例
编写一个消息生产者
nsq_single_product.go
编写一个消息消费者
nsq_single_consumer.go
添加第一个实例
添加第二个实例
消息生产者
nsq_cluster_product.go
消息消费者
nsq_cluster_consumer.go
分享文章:go语言异步队列 go语言开发的消息队列
URL链接:http://pcwzsj.com/article/dodgddo.html