go语言gc例子 go 语言 gui

Golang实验性功能SetMaxHeap 固定值GC

简单来说, SetMaxHeap 提供了一种可以设置固定触发阈值的 GC (Garbage Collection垃圾回收)方式

成都创新互联公司专注于企业成都全网营销推广、网站重做改版、钟楼网站定制设计、自适应品牌网站建设、H5技术商城系统网站开发、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为钟楼等各大城市提供网站开发制作服务。

官方源码链接

大量临时对象分配导致的 GC 触发频率过高, GC 后实际存活的对象较少,

或者机器内存较充足,希望使用剩余内存,降低 GC 频率的场景

GC 会 STW ( Stop The World ),对于时延敏感场景,在一个周期内连续触发两轮 GC ,那么 STW 和 GC 占用的 CPU 资源都会造成很大的影响, SetMaxHeap 并不一定是完美的,在某些场景下做了些权衡,官方也在进行相关的实验,当前方案仍没有合入主版本。

先看下如果没有 SetMaxHeap ,对于如上所述的场景的解决方案

这里简单说下 GC 的几个值的含义,可通过 GODEBUG=gctrace=1 获得如下数据

这里只关注 128-132-67 MB 135 MB goal ,

分别为 GC开始时内存使用量 - GC标记完成时内存使用量 - GC标记完成时的存活内存量 本轮GC标记完成时的 预期 内存使用量(上一轮 GC 完成时确定)

引用 GC peace设计文档 中的一张图来说明

对应关系如下:

简单说下 GC pacing (信用机制)

GC pacing 有两个目标,

那么当一轮 GC 完成时,如何只根据本轮 GC 存活量去实现这两个小目标呢?

这里实际是根据当前的一些数据或状态去 预估 “未来”,所有会存在些误差

首先确定 gc Goal goal = memstats.heap_marked + memstats.heap_marked*uint64(gcpercent)/100

heap_marked 为本轮 GC 存活量, gcpercent 默认为 100 ,可以通过环境变量 GOGC=100 或者 debug.SetGCPercent(100) 来设置

那么默认情况下 goal = 2 * heap_marked

gc_trigger 是与 goal 相关的一个值( gc_trigger 大约为 goal 的 90% 左右),每轮 GC 标记完成时,会根据 |Ha-Hg| 和实际使用的 cpu 资源 动态调整 gc_trigger 与 goal 的差值

goal 与 gc_trigger 的差值即为,为 GC 期间分配的对象所预留的空间

GC pacing 还会预估下一轮 GC 发生时,需要扫描对象对象的总量,进而换算为下一轮 GC 所需的工作量,进而计算出 mark assist 的值

本轮 GC 触发( gc_trigger ),到本轮的 goal 期间,需要尽力完成 GC mark 标记操作,所以当 GC 期间,某个 goroutine 分配大量内存时,就会被拉去做 mark assist 工作,先进行 GC mark 标记赚取足够的信用值后,才能分配对应大小的对象

根据本轮 GC 存活的内存量( heap_marked )和下一轮 GC 触发的阈值( gc_trigger )计算 sweep assist 的值,本轮 GC 完成,到下一轮 GC 触发( gc_trigger )时,需要尽力完成 sweep 清扫操作

预估下一轮 GC 所需的工作量的方式如下:

继续分析文章开头的问题,如何充分利用剩余内存,降低 GC 频率和 GC 对 CPU 的资源消耗

如上图可以看出, GC 后,存活的对象为 2GB 左右,如果将 gcpercent 设置为 400 ,那么就可以将下一轮 GC 触发阈值提升到 10GB 左右

前面一轮看起来很好,提升了 GC 触发的阈值到 10GB ,但是如果某一轮 GC 后的存活对象到达 2.5GB 的时候,那么下一轮 GC 触发的阈值,将会超过内存阈值,造成 OOM ( Out of Memory ),进而导致程序崩溃。

可以通过 GOGC=off 或者 debug.SetGCPercent(-1) 来关闭 GC

可以通过进程外监控内存使用状态,使用信号触发的方式通知程序,或 ReadMemStats 、或 linkname runtime.heapRetained 等方式进行堆内存使用的监测

可以通过调用 runtime.GC() 或者 debug.FreeOSMemory() 来手动进行 GC 。

这里还需要说几个事情来解释这个方案所存在的问题

通过 GOGC=off 或者 debug.SetGCPercent(-1) 是如何关闭 GC 的?

gc 4 @1.006s 0%: 0.033+5.6+0.024 ms clock, 0.27+4.4/11/25+0.19 ms cpu, 428-428-16 MB, 17592186044415 MB goal, 8 P (forced)

通过 GC trace 可以看出,上面所说的 goal 变成了一个很诡异的值 17592186044415

实际上关闭 GC 后, Go 会将 goal 设置为一个极大值 ^uint64(0) ,那么对应的 GC 触发阈值也被调成了一个极大值,这种处理方式看起来也没什么问题,将阈值调大,预期永远不会再触发 GC

那么如果在关闭 GC 的情况下,手动调用 runtime.GC() 会导致什么呢?

由于 goal 和 gc_trigger 被设置成了极大值, mark assist 和 sweep assist 也会按照这个错误的值去计算,导致工作量预估错误,这一点可以从 trace 中进行证明

可以看到很诡异的 trace 图,这里不做深究,该方案与 GC pacing 信用机制不兼容

记住,不要在关闭 GC 的情况下手动触发 GC ,至少在当前 Go1.14 版本中仍存在这个问题

SetMaxHeap 的实现原理,简单来说是强行控制了 goal 的值

注: SetMaxHeap ,本质上是一个软限制,并不能解决 极端场景 下的 OOM ,可以配合内存监控和 debug.FreeOSMemory() 使用

SetMaxHeap 控制的是堆内存大小, Go 中除了堆内存还分配了如下内存,所以实际使用过程中,与实际硬件内存阈值之间需要留有一部分余量。

对于文章开始所述问题,使用 SetMaxHeap 后,预期的 GC 过程大概是这个样子

简单用法1

该方法简单粗暴,直接将 goal 设置为了固定值

注:通过上文所讲,触发 GC 实际上是 gc_trigger ,所以当阈值设置为 12GB 时,会提前一点触发 GC ,这里为了描述方便,近似认为 gc_trigger=goal

简单用法2

当不关闭 GC 时, SetMaxHeap 的逻辑是, goal 仍按照 gcpercent 进行计算,当 goal 小于 SetMaxHeap 阈值时不进行处理;当 goal 大于 SetMaxHeap 阈值时,将 goal 限制为 SetMaxHeap 阈值

注:通过上文所讲,触发 GC 实际上是 gc_trigger ,所以当阈值设置为 12GB 时,会提前一点触发 GC ,这里为了描述方便,近似认为 gc_trigger=goal

切换到 go1.14 分支,作者选择了 git checkout go1.14.5

选择官方提供的 cherry-pick 方式(可能需要梯子,文件改动不多,我后面会列出具体改动)

git fetch "" refs/changes/67/227767/3 git cherry-pick FETCH_HEAD

需要重新编译Go源码

注意点:

下面源码中的官方注释说的比较清楚,在一些关键位置加入了中文注释

入参bytes为要设置的阈值

notify 简单理解为 GC 的策略 发生变化时会向 channel 发送通知,后续源码可以看出“策略”具体指哪些内容

返回值为本次设置之前的 MaxHeap 值

$GOROOT/src/runtime/debug/garbage.go

$GOROOT/src/runtime/mgc.go

注:作者尽量用通俗易懂的语言去解释 Go 的一些机制和 SetMaxHeap 功能,可能有些描述与实现细节不完全一致,如有错误还请指出

go语言可以做什么

1、服务器编程:以前你如果使用C或者C++做的那些事情,用Go来做很合适,例如处理日志、数据打包、虚拟机处理、文件系统等。

2、分布式系统、数据库代理器、中间件:例如Etcd。

3、网络编程:这一块目前应用最广,包括Web应用、API应用、下载应用,而且Go内置的net/http包基本上把我们平常用到的网络功能都实现了。

4、开发云平台:目前国外很多云平台在采用Go开发,我们所熟知的七牛云、华为云等等都有使用Go进行开发并且开源的成型的产品。

5、区块链:目前有一种说法,技术从业人员把Go语言称作为区块链行业的开发语言。如果大家学习区块链技术的话,就会发现现在有很多很多的区块链的系统和应用都是采用Go进行开发的,比如ehtereum是目前知名度最大的公链,再比如fabric是目前最知名的联盟链,两者都有go语言的版本,且go-ehtereum还是以太坊官方推荐的版本。

自1.0版发布以来,go语言引起了众多开发者的关注,并得到了广泛的应用。go语言简单、高效、并发的特点吸引了许多传统的语言开发人员,其数量也在不断增加。

使用 Go 语言开发的开源项目非常多。早期的 Go 语言开源项目只是通过 Go 语言与传统项目进行C语言库绑定实现,例如 Qt、Sqlite 等。

后期的很多项目都使用 Go 语言进行重新原生实现,这个过程相对于其他语言要简单一些,这也促成了大量使用 Go 语言原生开发项目的出现。

Go语言能做什么?

Go 语言被设计成一门应用于搭载 Web 服务器,存储集群或类似用途的巨型中央服务器的系统编程语言。对于高性能分布式系统领域而言,Go 语言无疑比大多数其它语言有着更高的开发效率。学习Go语言,可以说是很简单的,入门快,想学习Go语言,可以到黑马程序员看看,有新出的教程。

Golang什么时候会触发GC

Golang采用了三色标记法来进行垃圾回收,那么在什么场景下会触发这个回收动作呢?

源码主要位于文件 src/runtime/mgc.go go version 1.16

触发条件从大方面说,可分为 手动触发 和 系统触发 两种方式。手动触发一般很少用,主要由开发者通过调用 runtime.GC() 函数来实现,而对于系统自动触发是 运行时 根据一些条件判断来进行的,这也正是本文要介绍的内容。

不管哪种触发方式,底层回收机制是一样的,所以我们先看一下手动触发,根据它来找系统触发的条件。

可以看到开始执行GC的是 gcStart() 函数,它有一个 gcTrigger 参数,是一个触发条件结构体,它的结构体也很简单。

其实在Golang 内部所有的GC都是通过 gcStart() 函数,然后指定一个 gcTrigger 的参数来开始的,而手动触发指定的条件值为 gcTriggerCycle 。 gcStart 是一个很复杂的函数,有兴趣的可以看一下源码实现。

对于 kind 的值有三种,分别为 gcTriggerHeap 、 gcTriggerTime 和 gcTriggerCycle 。

运行时会通过 gcTrigger.test() 函数来决定是否需要触发GC,只要满足上面基中一个即可。

到此我们基本明白了这三种触发GC的条件,那么对于系统自动触发这种,Golang 从一个程序的开始到运行,它又是如何一步一步监控到这个条件的呢?

其实 runtime 在程序启动时,会在一个初始化函数 init() 里启用一个 forcegchelper() 函数,这个函数位于 proc.go 文件。

为了减少系统资源占用,在 forcegchelper 函数里会通过 goparkunlock() 函数主动让自己陷入休眠,以后由 sysmon() 监控线程根据条件来恢复这个gc goroutine。

可以看到 sysmon() 会在一个 for 语句里一直判断这个 gcTriggerTime 这个条件是否满足,如果满足的话,会将 forcegc.g 这个 goroutine 添加到全局队列里进行调度(这里 forcegc 是一个全局变量)。

调度器在调度循环 runtime.schedule 中还可以通过垃圾收集控制器的 runtime.gcControllerState.findRunnabledGCWorker 获取并执行用于后台标记的任务。


本文题目:go语言gc例子 go 语言 gui
网址分享:http://pcwzsj.com/article/ddddhce.html