TensorFlow命名空间和TensorBoard图节点的示例分析-创新互联

这篇文章主要介绍TensorFlow命名空间和TensorBoard图节点的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请虚拟主机、营销软件、网站建设、六合网站维护、网站推广。

一,命名空间函数

tf.variable_scope 
tf.name_scope 
先以下面的代码说明两者的区别

 # 命名空间管理函数
'''
说明tf.variable_scope和tf.name_scope的区别
'''
def manage_namespace():
 with tf.variable_scope("foo"):
  # 在命名空间foo下获取变量"bar",于是得到的变量名称为"foo/bar"。
  a = tf.get_variable("bar",[1]) #获取变量名称为“bar”的变量
  print a.name  #输出:foo/bar:0
 with tf.variable_scope("bar"):
  # 在命名空间bar下获取变量"bar",于是得到的变量名称为"bar/bar"。
  a = tf.get_variable("bar",[1])
  print a.name  #输出:bar/bar:0
 with tf.name_scope("a"):
  # 使用tf.Variable函数生成变量会受tf.name_scope影响,于是得到的变量名称为"a/Variable"。
  a = tf.Variable([1]) #新建变量
  print a.name  #输出:a/Variable:0

  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,于是变量并不在a这个命名空间中。
  a = tf.get_variable("b",[1])
  print a.name  #输出:b:0
 with tf.name_scope("b"):
  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,所以这里将试图获取名称
  # 为“b”的变量。然而这个变量已经被声明了,于是这里会报重复声明的错误
  tf.get_variable("b",[1])#提示错误

二,TensorBoard计算图查看

1 以以下代码实例,为指定任何的命名空间

def practice_num1():
# 练习1: 构建简单的计算图
 input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

如何使用TensorBoard的过程不再介绍。查看未指明命名空间的运算图

TensorFlow命名空间和TensorBoard图节点的示例分析

2 修改代码制定命名空间之后的代码

def practice_num1_modify():
 #将输入定义放入各自的命名空间中,从而使得tensorboard可以根据命名空间来整理可视化效果图上的节点
 # 练习1: 构建简单的计算图
 with tf.name_scope("input1"):
  input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 with tf.name_scope("input2"):
  input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

查看运算图

TensorFlow命名空间和TensorBoard图节点的示例分析

上图只包含命名的两个命名空间的节点,我们可以点击名称“input2”的图标上的+号,展开该命名空间

TensorFlow命名空间和TensorBoard图节点的示例分析

效果:通过命名空间可以整理可视化效果图上的节点,使可视化的效果更加清晰。

以上是“TensorFlow命名空间和TensorBoard图节点的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!


网页标题:TensorFlow命名空间和TensorBoard图节点的示例分析-创新互联
当前URL:http://pcwzsj.com/article/csiege.html