PythonsklearnKFold如何生成交叉验证数据集-创新互联
这篇文章将为大家详细讲解有关Python sklearn KFold如何生成交叉验证数据集,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联-专业网站定制、快速模板网站建设、高性价比海丰网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式海丰网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖海丰地区。费用合理售后完善,十余年实体公司更值得信赖。源起:
1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用sklearn提供的KFold并不能满足这个需求。
2.将生成的交叉验证数据集保存成CSV文件,而不是直接用sklearn训练分类模型。
3.在编码过程中有一的误区需要注意:
这个sklearn官方给出的文档
>>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = ["a", "b", "c", "d"] >>> kf = KFold(n_splits=2) >>> for train, test in kf.split(X): ... print("%s %s" % (train, test)) [2 3] [0 1] [0 1] [2 3]
我之前犯的一个错误是将train,test理解成原数据集分割成子数据集之后的子数据集索引。而实际上,它就是原始数据集本身的样本索引。
源码:
# -*- coding:utf-8 -*- # 得到交叉验证数据集,保存成CSV文件 # 输入是一个包含正常恶意标签的完整数据集,在读数据的时候分开保存到datasetBenign,datasetMalicious # 分别对两个数据集进行KFold,最后合并保存 from sklearn.model_selection import KFold import csv def writeInFile(benignKFTrain, benignKFTest, maliciousKFTrain, maliciousKFTest, i, datasetBenign, datasetMalicious): newTrainFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\ImbalancedAllTraffic-train-%s.csv" % i newTestFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\IImbalancedAllTraffic-test-%s.csv" % i newTrainFile = open(newTrainFilePath, "wb")# wb 为防止空行 newTestFile = open(newTestFilePath, "wb") writerTrain = csv.writer(newTrainFile) writerTest = csv.writer(newTestFile) for index in benignKFTrain: writerTrain.writerow(datasetBenign[index]) for index in benignKFTest: writerTest.writerow(datasetBenign[index]) for index in maliciousKFTrain: writerTrain.writerow(datasetMalicious[index]) for index in maliciousKFTest: writerTest.writerow(datasetMalicious[index]) newTrainFile.close() newTestFile.close() def getKFoldDataSet(datasetPath): # CSV读取文件 # 开始从文件中读取全部的数据集 datasetFile = file(datasetPath, 'rb') datasetBenign = [] datasetMalicious = [] readerDataset = csv.reader(datasetFile) for line in readerDataset: if len(line) > 1: curLine = [] curLine.append(float(line[0])) curLine.append(float(line[1])) curLine.append(float(line[2])) curLine.append(float(line[3])) curLine.append(float(line[4])) curLine.append(float(line[5])) curLine.append(float(line[6])) curLine.append(line[7]) if line[7] == "benign": datasetBenign.append(curLine) else: datasetMalicious.append(curLine) # 交叉验证分割数据集 K = 5 kf = KFold(n_splits=K) benignKFTrain = []; benignKFTest = [] for train,test in kf.split(datasetBenign): benignKFTrain.append(train) benignKFTest.append(test) maliciousKFTrain=[]; maliciousKFTest=[] for train,test in kf.split(datasetMalicious): maliciousKFTrain.append(train) maliciousKFTest.append(test) for i in range(K): print "======================== "+ str(i)+ " ========================" print benignKFTrain[i], benignKFTest[i] print maliciousKFTrain[i],maliciousKFTest[i] writeInFile(benignKFTrain[i], benignKFTest[i], maliciousKFTrain[i], maliciousKFTest[i], i, datasetBenign, datasetMalicious) datasetFile.close() if __name__ == "__main__": getKFoldDataSet(r"E:\hadoopExperimentResult\5KFold\AllDataSetIIR10\dataset\ImbalancedAllTraffic-10.csv")
关于“Python sklearn KFold如何生成交叉验证数据集”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
当前题目:PythonsklearnKFold如何生成交叉验证数据集-创新互联
链接URL:http://pcwzsj.com/article/cosdpj.html