python7.4.2二叉树路径问题及LeetCode题目解析-创新互联
下面题目中的路径,定义有所延伸,在解法思路及时间空间复杂度上有所挑战。
成都创新互联是专业的漳县网站建设公司,漳县接单;提供网站制作、成都网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行漳县网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!437. Path Sum III
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
题目解析:
此题的路径延伸至任一结点至其子孙结点的路径,解法一,速度将近1s,非常慢,但是写法简洁,思路也是最为直接的一种,对这棵树前序遍历,调用dfs函数,求从该结点起至任一子结点的路径和是否为sum。该方法效果低的原因就是大量重复遍历。
class Solution:
def pathSum(self, root: TreeNode, sum: int) -> int:
"""
:type root: TreeNode
:type sum: int
:rtype: int
"""
def dfs(node, sum):
return dfs(node.left, sum-node.val) + dfs(node.right, sum-node.val) + (sum == node.val) if node else 0
return dfs(root, sum) + self.pathSum(root.left, sum) + self.pathSum(root.right, sum) if root else 0
解法二,用非递归后序遍历的框架,stack存储所有父结点,sums列表存储的是以任一结点为起始的路径和(有点类似动态规划?),因此sums的长度和stack一致,当sums中的任一数字与sum相等,都是一个满足要求的路径。在后序遍历的过程中,结点退栈,sums中对应的也退栈,并且每个数字减去该结点的值。该方法速度500ms,但是空间复杂度基本是top,beat 99.9%。
class Solution:
def pathSum(self, root: TreeNode, sum: int) -> int:
if not root:
return 0
stack = []
sums = []
f = 0
res = 0
p = root
while True:
while p:
stack.append(p)
sums.append(0)
for i in range(len(sums)):
sums[i] += p.val
if sums[i] == sum:
res += 1
p = p.left
pre = None
f = 1
while stack and f:
p = stack[-1]
if p.right == pre:
sums.pop()
for i in range(len(sums)):
sums[i] -= p.val
stack.pop()
pre = p
else:
p = p.right
f = 0
if not stack:
break
return res
明显时间复杂度上还有很多优化空间,我们看解法三,大佬所做,52ms,可谓相当可以了。细细揣摩,大思路上,同上一个解法,仍然是只遍历一次,避免重复,因此需要存储曾出现的路径和,这一解法引入了hashmap。鄙人的方法慢在sums列表的值,需要挨个加减以维持其作用,而sumMap作用相同,通过操作字典的键值对,解决了性能问题。参考这一思路,可以在上面非递归的框架下改写一番。
class Solution:
def pathSum(self, root: TreeNode, sum: int) -> int:
"""
:type root: TreeNode
:type sum: int
:rtype: int
"""
from collections import defaultdict
def helper(cur, sumSoFar):
nonlocal res, sumMap
sumSoFar += cur.val
if sumSoFar == sum:
res += 1 无锡看妇科的医院 http://www.ytsg120.cn
res += sumMap[sumSoFar - sum]
sumMap[sumSoFar] += 1
if cur.left:
helper(cur.left, sumSoFar)
if cur.right:
helper(cur.right, sumSoFar)
sumMap[sumSoFar] -= 1
if not root:
return 0
sumMap = defaultdict(int)
res = 0 if root.val != sum else 1
sumMap[root.val] = 1
if root.left:
helper(root.left, root.val)
if root.right:
helper(root.right, root.val)
return res
124. Binary Tree Maximum Path Sum
Given a non-empty binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
Example 1:
Input: [1,2,3]
1
/ \
2 3
Output: 6
Example 2:
Input: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
Output: 42
题目解析:
这道题在我看来,似乎是路径题目中的大boss。题目百思不得其解,最后还是看了其他人的写法,自己琢磨了一番,其实不同于其他路径问题。我们先看代码。
class Solution:
def maxPathSum(self, root: TreeNode) -> int:
max_sum = float("-inf")
def helper(node):
nonlocal max_sum
if not node:
return 0
lt_sum = helper(node.left)
rt_sum = helper(node.right)
local_sum = max(node.val, max(lt_sum, rt_sum) + node.val) # 1
max_sum = max(max_sum, max(local_sum, lt_sum + rt_sum + node.val)) # 2
return local_sum
helper(root)
return max_sum
首先,该题目的路径大有不同,不一定包括叶子结点,也不一定包括根结点,有可能是从左子到父到右子的路径。题目的结果,是一个全局变量;解题过程是一个普通的先序遍历,递归的过程中完成两件事:一是返回local_sum,是左或右子树大和,代码1判断是该结点值自己大,还是加上其左右子树之一的和大(只能选一个),该局部值向上递归,相当于在求路径和的问题时,把这样的大问题分解为一个个小问题来解决;第二件事是更新max_sum,此时允许该结点值加上左右子树的大和,构成一个完整的路径,判断改值是不是大。
另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
当前名称:python7.4.2二叉树路径问题及LeetCode题目解析-创新互联
文章源于:http://pcwzsj.com/article/cdpcdi.html